(-)-Sparteine-Mediated Asymmetric Intramolecular Carbolithiation of Alkenes: Synthesis of Enantiopure Cyclopentanes with Three Consecutive Stereogenic Centers

by Dieter Hoppe*, Michael J. Woltering ${ }^{1}$), Martin Oestreich ${ }^{1}$), and Roland Fröhlich ${ }^{2}$)
Organisch-chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, D-48149 Münster, Germany, Fax: (+ 49)251-8339772

Abstract

An asymmetric intramolecular carbolithiation reaction was developed by combining the (- -sparteinemediated enantiotopos-differentiating deprotonation and the anionic 5-exo-trig cyclization. Achiral 6-phenyl-hex-5-enyl carbamates were efficiently cyclized furnishing regio-, diastereo- ($\mathrm{dr}>99: 1$), and enantioselectively (er $>98: 2$) 1,2-trans-substituted cyclopentanes. The intermediate primary benzylic lithium-carbanion pairs were - in spite of their configurative lability - diastereoselectively substituted by versatile electrophiles creating a third consecutive stereogenic center. Additionally, some 4-functionalized 6-phenylhex-5-enyl carbamates were also cyclized in high yield to provide enantiomerically pure cyclopentanes incorporating three adjacent stereogenic centers.

Introduction. - Although the carbometalation of alkenes has been known since Ziegler's pioneering work [1], this C,C bond-forming reaction still remains as one of the most lively areas in organic synthesis [2]. We became interested in the carbolithiation of alkenes when Normant and Marek reported the first enantioselective intermolecular carbolithiation mediated by $(-)$-sparteine (1) [3][4]. These studies demonstrate that complexes of the general type $\mathrm{RLi} / \mathbf{1}(\mathrm{R}=$ alkyl $)$ are capable of differentiating the enantiotopic faces of $\mathrm{C}=\mathrm{C}$ bonds.

We have developed an efficient method to generate highly enantiomerically enriched lithium carbanion pairs by means of asymmetric deprotonation of carbamates derived from primary alkanols with the chiral base sec-butyllithium/(-)-sparteine (s $\mathrm{BuLi} / \mathbf{1}$). The intermediate lithium-carbanion species have been subsequently reacted with versatile external electrophiles under retention of the configuration at the former lithium-bearing C -atom [5]. Though, $\mathrm{C}=\mathrm{C}$ bonds had not been employed as internal electrophiles so far which corresponds to an intramolecular carbolithiation [6-8]. Consequently, we thought that by fusing the concepts of the enantiotopos-differentiating deprotonation [5] and the intramolecular carbolithiation [2], the latter could be driven in an enantioselective fashion ${ }^{3}$) (Scheme 1).

In this paper, we report on our comprehensive investigations of the enantioselective intramolecular carbolithiation ${ }^{4}$) giving rise to enantiomerically pure cyclopentanes with three adjacent stereogenic centers [11].

[^0]Scheme 1

with chiral induction
without chiral induction via $1 / \mathrm{Li}$ exchange [7]

1 (-)-sparteine

i) t - BuLi , pentane $/ \mathrm{Et}_{2} \mathrm{O} 3: 2$, -78° then warm. i i $) \mathrm{MeOH}, 95 \%$. iii) s - $\mathrm{BuLi} / \mathbf{1}, \mathrm{Et}_{2} \mathrm{O},-78^{\circ}$. iv) $\mathrm{MeOH},-78^{\circ}$ to r.t. OCby $=$ 2,2,4,4-tetramethyl-1,3-oxazolidine-3-carbonyloxy.

Results and Discussion. - Our investigations began with the synthesis of the alkenes $\mathbf{5 a}(\mathrm{R}=\mathrm{H})$ and $\mathbf{5 b}(\mathrm{R}=\mathrm{Me})$. The latter, bearing the Me groups, was assumed to be the more promising cyclization precursor, since two geminal substituents are known to enhance ring closures ${ }^{5}$). The preparation of $\mathbf{5}$ was designed in order to provide an easy access to all $\mathrm{C}=\mathrm{C}$ bond geometries. According to the straightforward three-step sequence, the 1,5 -diols $\mathbf{2 a}$ and $\mathbf{2 b}$ [14] were converted to the phosphonium bromides $\mathbf{3 a}$ and $\mathbf{3 b}{ }^{6}$), respectively, and these were subsequently reacted with PhCHO furnishing the (Z)-configured alkenes (Z)-5 in (E / Z)-ratios of $4: 96$ for $(Z)-\mathbf{5 a}$ and (Z)-5b [16] (Scheme 2). The configuration of the $\mathrm{C}=\mathrm{C}$ bond in $(Z)-5 \mathbf{a}$ was efficiently inverted by treatment with catalytic amounts of I_{2} to give (E)-5a with an (E / Z)-ratio of $95: 5$ (Scheme 2). The alkene $(E / Z)-5 \mathbf{b}((E / Z)$-ratio of $54: 46)$ was synthesized again starting from $\mathbf{2 b}$ [14] by monocarbamoylation with 2,2,4,4-tetramethyl-1,3-oxazol-idine-3-carbonyl chloride (CbyCl) [17], oxidation, and olefination with $\mathrm{BnPPh}_{3} \mathrm{Br}$ (Scheme 2).

The treatment of $(Z) \mathbf{- 5 a}$ with $s-\mathrm{BuLi} / \mathbf{1}$ in $\mathrm{Et}_{2} \mathrm{O}$ at -78° for 20 h gave 30% of $\mathbf{8 a}$ in diastereomerically pure form ($\mathrm{dr}>99: 1$) next to 32% of the cyclization precursor (Z) 5a (Scheme 3 and Table, Entry 1). Owing to the Thorpe-Ingold effect [13], the alkenes $(Z) \mathbf{- 5 b}$ and $(E / Z)-\mathbf{5 b}$ cyclized stereoselectively $(\mathrm{dr}>99: 1)$ to furnish $\mathbf{8 b}$ independent of the configuration of the $\mathrm{C}=\mathrm{C}$ bond in the somewhat higher yields of 50 and 51%, respectively (Scheme 3 and Table, Entries 9 and 10). Furthermore, the achiral bicyclic product $9(\mathrm{R}=\mathrm{H})$ was isolated in small quantities in the presence of the sterically demanding diamine 1, whereas 9 was formed in nearly quantitative yield of 93% in the presence of $N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine (TMEDA) instead of $\mathbf{1}$ (Scheme 3). The steric bulk at the Li center and the reaction temperature were the major

[^1]Scheme 2

i) $\mathrm{NaH}, \mathrm{CbyCl}, \mathrm{THF}$, reflux; 32a $(\mathrm{R}=\mathrm{H})$: $77 \%, \mathbf{3 2 b}(\mathrm{R}=\mathrm{Me})$: 76%. ii) $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ}$; 33a ($\left.\mathrm{R}=\mathrm{H}\right)$: 97%, 33b $(\mathrm{R}=\mathrm{Me}): 90 \%$. iii) PPh_{3}, neat, 100°; 3a $(\mathrm{R}=\mathrm{H}): 95 \%$, 3b $(\mathrm{R}=\mathrm{Me}): 41 \%$. iv) pyridinium chlorochromate (PCC), $\mathrm{NaOAc}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t.; $\mathbf{4 b}(\mathrm{R}=\mathrm{Me}): 87 \%$. $\left.v\right) \mathrm{PhCHO},(Z)-\mathbf{5 a}(\mathrm{R}=\mathrm{H}): t-\mathrm{BuOK}, \mathrm{Et}_{2} \mathrm{O}$, -40°, then r.t., then reflux; $86 \%,(Z)-5 b(\mathrm{R}=\mathrm{Me})$: NaHMDS, THF, -50°, then r.t., 57%. vi) $\mathrm{BnPPh}_{3} \mathrm{Br}$, NaHMDS, THF, $\mathrm{Et}_{2} \mathrm{O},-40^{\circ}$, then r.t., $(E / Z)-5 \mathbf{b}(\mathrm{R}=\mathrm{Me}): 81 \%$. vii $) \mathrm{I}_{2}$, hexane, r.t., $(E)-5 \mathbf{a}(\mathrm{R}=\mathrm{H}): 78 \%$. See also Exper. Part.

Scheme 3a)

[^2]parameters affecting the intramolecular nucleophilic attack of the benzylic lithium species at the $\mathrm{C}(1)$, with the carbamate acting as a leaving group ${ }^{7}$).

The relative configuration of 8a was assigned as trans by NOE measurements showing a strong NOE of the benzylic protons and the proton at $\mathrm{C}(1)$. The absolute configuration of $\mathbf{8 a}$ was determined by chemical correlation of the decarbamoylated alcohol 10a, which had been previously described [19]; the ($1 R, 2 S$)-configuration was unambigously established by comparison of the optical rotations (Scheme 4).

i) $\mathrm{MeSO}_{3} \mathrm{H}$, MeOH , reflux. ii) $\mathrm{K}_{2} \mathrm{CO}_{3}$, MeOH , reflux, 94%. iii) $\mathrm{Ac}_{2} \mathrm{O}$, 4-(dimethylamino)pyridine (DMAP), pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t.; 90%.
${ }^{1} \mathrm{H}-\mathrm{NMR}$ Shift experiments with the acetates 11a (Scheme 4) and rac-11a ${ }^{8}$) in the presence of $21 \mathrm{~mol} \%(+)-\left[\mathrm{Eu}(\mathrm{hfc})_{3}\right]$ lead to a splitting of the signals of the Me groups of the antipodes; for the enantiomerically enriched sample no splitting was detected. The stereochemical outcome of the asymmetric intramolecular carbolithiation coincides with our observations that the chiral base s - $\mathrm{BuLi} / \mathbf{1}$ enantioselectively abstracts the α -pro-S-proton in alkyl carbamates [5]. The resulting highly enantiomerically enriched, configurationally stable lithium-carbanion pair 6 inserts the $\mathrm{C}=\mathrm{C}$ bond from the Si -face in a syn-fashion. The cyclization, termed 5-exo-trig ring closure by Baldwin [21], provides two epimeric, configurationally labile [22] benzylic lithium-carbanion pairs $(S)-7$ and $(R)-7$ in dependence on the $\mathrm{C}=\mathrm{C}$ bond geometry (Scheme 3).

The primary benzylic lithium-carbanion pairs $(S)-7$ and $(R)-7$ should be initially generated by the asymmetric cyclocarbolithiation in a ratio that is directly related to the (E / Z)-ratio of the cyclization precursor. Since these species are configurationally labile [22], $(S)-7$ and $(R)-7$ are expected to equilibrate, and we were surprised that the reaction of $\mathbf{7}$ with versatile electrophiles provided the carbocycles $\mathbf{1 3}$-17 in excellent diastereomeric ratios of $92: 8$ up to $>98: 2$, except for the deuterolysis (Scheme 5, and Table, Entries 2-8 and 11-17).

The relative configuration of compounds $\mathbf{1 2 - 1 7}$ with three consecutive stereogenic centers was exemplarily clarified by transforming the silylated carbocycle 16a into the 1,3-diol 19a. After the decarbamoylation of 16a, the resulting cyclopentanol 18a was stereospecifically oxidatively desilylated with retention of the configuration at the

[^3]
i) $s-\mathrm{BuLi} / 1, \mathrm{Et}_{2} \mathrm{O},-78^{\circ}$. ii) $\mathrm{E}-\mathrm{X},-78^{\circ}$ to r.t. For further details, see Table 1 .
$\left.{ }^{\text {a }}\right)$ Ligands (e.g., 1) at the Li center are omitted for the sake of clarity.

Table 1. Synthesis of Cyclopentanes with Three Consecutive Stereocenters

Entry	Alkene	R	(E / Z)-Ratio ${ }^{\text {a }}$)	E-X	Carbocycle	dr ${ }^{\text {b }}$)	Yield/\%
1	(Z)-5a	H	4:96	$\mathrm{HO}-\mathrm{H}$	8 a	-	30
2	(Z)-5a	H	4:96	$\mathrm{CH}_{3} \mathrm{O}-\mathrm{D}$	12a	$33: 67^{\text {c }}$)	19
3	(Z)-5a	H	4:96	$\mathrm{Me}_{3} \mathrm{Si}-\mathrm{Cl}$	13a	> $98: 2$	32
4	(Z)-5a	H	4:96	$\mathrm{Me}_{3} \mathrm{Sn}-\mathrm{Cl}$	14a	$>98: 2$	27
5	(Z)-5a	H	4:96	$\mathrm{Bu}_{3} \mathrm{Sn}-\mathrm{Cl}$	15a	$>98: 2$	14
6	(Z)-5a	H	4:96	$\mathrm{PhMe}_{2} \mathrm{Si}-\mathrm{Cl}$	16a	$>98: 2$	38
7	(E)-5a	H	95:5	$\mathrm{PhMe}_{2} \mathrm{Si}-\mathrm{Cl}$	16a	> $98: 2$	36
$8^{\text {d }}$)	(Z)-5a	H	4:96	$\mathrm{CO}_{2} / \mathrm{CH}_{2} \mathrm{~N}_{2}$	17a	97: $\left.3^{\mathrm{e}}\right)^{\mathrm{f}}$)	32
9	(Z)-5b	Me	4:96	$\mathrm{HO}-\mathrm{H}$	8b	-	50
10	(E / Z)-5b	Me	$54: 46$	$\mathrm{HO}-\mathrm{H}$	8b	-	51
11	(E / Z)-5b	Me	$54: 46$	$\mathrm{CH}_{3} \mathrm{O}-\mathrm{D}$	12b	$43: 57^{\text {c }}$)	55
12	(E/Z)-5b	Me	54:46	$\mathrm{Me}_{3} \mathrm{Si}-\mathrm{Cl}$	13b	> 98 : 2	$38(28)^{\mathrm{g}}$)
13	(Z)-5b	Me	4:96	$\mathrm{Me}_{3} \mathrm{Sn}-\mathrm{Cl}$	14b	$>98: 2$	$34(25)^{\mathrm{g}}$)
14	(E / Z)-5b	Me	$54: 46$	$\mathrm{Bu}_{3} \mathrm{Sn}-\mathrm{Cl}$	15b	$>98: 2$	30
15	(E / Z)-5b	Me	54 : 46	$\mathrm{PhMe} 2 \mathrm{Si}-\mathrm{Cl}$	16b	> $98: 2$	48
$16^{\text {d }}$)	(Z)-5b	Me	4:96	$\mathrm{CO}_{2} / \mathrm{CH}_{2} \mathrm{~N}_{2}$	17b	$\left.92: 8^{\mathrm{e}}\right)^{\mathrm{f}}$)	50
$17^{\text {d }}$)	$(E / Z) \mathbf{- 5 b}$	Me	$54: 46$	$\mathrm{CO}_{2} / \mathrm{CH}_{2} \mathrm{~N}_{2}$	17b	$\left.92: 8^{\text {e }}\right)^{\mathrm{f}}$)	43

${ }^{\text {a }}$) Determined by GC analysis ($\mathrm{R}=\mathrm{H}$) or from the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra by integration of the signals of the vinylic protons $(\mathrm{R}=\mathrm{Me}) .^{\mathrm{b}}$) Diastereomer ratio of the epimeric benzylic substitution products determined by GC analysis and from ${ }^{1} \mathrm{H}$-NMR spectra. ${ }^{\text {c }}$) Determined from the ${ }^{1} \mathrm{H}$-NMR spectra of the mixture of the alkene and the carbocycle. $\left.{ }^{\mathrm{d}}\right) \mathrm{CO}_{2}$ was used as the electrophile and the crude carboxylic acid was esterified with $\mathrm{CH}_{2} \mathrm{~N}_{2}$. ${ }^{\mathrm{e}}$) Determined by GC analysis. ${ }^{\mathrm{f}}$) Some epimerization at the benzylic position might be due to enolization.
${ }^{\mathrm{g}}$) Isolated yields in parentheses.

i) $\mathrm{MeSO}_{3} \mathrm{H}, \mathrm{MeOH}$, reflux. ii) $\mathrm{K}_{2} \mathrm{CO}_{3}$, MeOH , reflux; 89%. iii) $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$. iv) $\mathrm{KF}, \mathrm{KHCO}_{3}, \mathrm{H}_{2} \mathrm{O}_{2}$, THF/MeOH, 0° then r.t.; 52%.

Figure. Crystal structure of $\mathbf{1 9} \mathbf{a}^{9}$)
benzylic stereocenter employing the Tamao protocol [23] (Scheme 6). The (1R,2R, αS)configuration of $\mathbf{1 9 a}$ was eludicated by a crystal-structure analysis ${ }^{9}$) (Fig.)

According to our [5][24] and other's [5][25] experience, benzylic lithium-carbanion pairs tend to react with electrophiles such as $\mathrm{R}_{3} \mathrm{SiCl}, \mathrm{R}_{3} \mathrm{SnCl}(\mathrm{R}=$ alkyl $)$, and CO_{2} under inversion of the configuration ${ }^{10}$). Consequently, it can be gathered from the (αS)-configuration of $\mathbf{1 3}-\mathbf{1 7}$ that the predominantely reacting benzylic lithium species is (R)-7. We suggest that two - possibly co-operative - pathways might be responsible for this surprisingly high selectivity of the benzylic electrophilic substitution (Scheme 5): a) The equilibrium of $(S)-7$ and $(R)-7$ is strongly in favor of the latter due to 1,3-diaxial interactions in (S)-7 and, therefore, the electrophile solely reacts with $(R)-\mathbf{7}$ to give 13-17. b) The epimeric intermediates $(S)-7$ and $(R)-7$ are fastly equilibrating (k_{eq}) with the latter being preferentially substituted by the electrophile $\left(k_{\mathrm{eq}} \gg k_{R}>k_{S}\right)$ through a dynamic kinetic resolution ${ }^{11}$).

The moderate yields prompted us to further investigate the ring closure of either cyclization precursor $\mathbf{5 a}$ or $\mathbf{5 b}$ revealing three major factors: a) The chiral base $s-\mathrm{BuLi} / \mathbf{1}$ selectively abstracts a proton from the α-position of the carbamate rather than in the allylic position. However, the kinetics for the ring closure is far from optimal, since, after electrophilic substitution, the α-functionalized carbamates (Z)-20a and (Z)-21a are isolated in considerable yields (Scheme 7, Test 1 and 2). b) Apart from that, the yield is also dependent on the reactivity of the electrophile, as shown for the silylation,

[^4]which occurs while warming from -78° to ambient temperature. Therefore, not only the silylation but also the cyclocarbolithiation and the undesirable 1,3-cycloelimination is accelerated. This is reflected by the fact that, instead of the silylated open-chain product, the bicyclic compound 9 was isolated as the major product (Scheme 7, Test 3). c) For the branched cyclization precursor $\mathbf{5 b}$, the deprotonation is not complete because of steric interactions of the geminal Me groups and the bulky base s-BuLi/ $\mathbf{1}$ (Scheme 7, Test 4).

Scheme 7

When we expanded the stereoselective intramolecular carbolithiation to alkynes [29] and conjugated systems [30], a sterically demanding substituent had to be introduced in the propargylic and allylic position, respectively, in order to suppress the deprotonation in these positions. Since the ring closure of these functionalized cyclization precursors provided the cyclopentanes in high yields, we decided to study the cyclization of the (S)-configured 4-substituted hex-5-enyl carbamates (E / Z) - $\mathbf{2 3}$ and (Z)-25.

The allylic amine (E / Z) - $\mathbf{2 3}$ was prepared from the previously reported aldehyde $\mathbf{2 2}$ [29][31] in an (E/Z)-ratio of $72: 28$, without suffering racemization, employing a Wittig olefination [32] (Scheme 8). After some optimization, the Lindlar reduction of 24 [29] furnished the corresponding allylic alcohol (Z)-25 with (E / Z)-ratio of $<5: 95$ (Scheme 9).

Scheme 8

i) $\mathrm{BnPPh}_{3} \mathrm{Br}, t$ - $\mathrm{BuOK}, \mathrm{Et}_{2} \mathrm{O},-18^{\circ}$ to r.t.; 80%.

Scheme 9

i) $\mathrm{Pd} / \mathrm{CaCO}_{3} / \mathrm{Pb}, \mathrm{H}_{2}$, quinoline, toluene, r.t.; $90 \% . \mathrm{TBDPS}=(t-\mathrm{Bu}) \mathrm{Ph}_{2} \mathrm{Si}$.

The alkenes $(E / Z) \mathbf{- 2 3}$ and $(Z) \mathbf{- 2 5}$ were transformed into the enantiomerically enriched lithium-carbanion pairs $\mathbf{2 6} / \mathbf{2 7}$ upon treatment with s - $\mathrm{BuLi} / \mathbf{1}$ at -78° (Scheme 10). Of the two feasible chair-like conformations, eq-26/eq-27 should undergo the 5-exo-trig ring closure, whereas ring closure of ax-26/ax-27 is unfavorable due to 1,3diaxial interactions. As described above for the unsubstituted derivatives, the cyclization proceeds in a syn-fashion under retention of the configuration at the former lithium-bearing C -atom. Both resulting epimeric benzylic lithium species (S) 28/(S)-29 and (R)-28)/(R)-29, depicted as trans-fused seven-membered chelates, are energetically unfavorable because of 1,3-diaxial $((S)-\mathbf{2 8} /(S)-29)$ or 1,3-diequatorial interactions $((R)-\mathbf{2 8} /(R)-29)$. In contrast to the intermediates (S)-7 and $(R)-7$ (Schemes 3 and 5), we suggest a benzylic lithium-carbanion pair not stabilized via a seven-membered cyclic chelate ${ }^{12}$) (Scheme 10). Methanolysis yielded the carbocycles 30 and 31, with three adjacent stereogenic centers, in good yields of 70 and 82%, and diastereomeric ratios that directly correspond to the enantiomeric ratio of the alkenes $(E / Z)-23$ and $\left.(Z)-25{ }^{13}\right)$.

$$
\text { i) } s-\mathrm{BuLi} / \mathbf{1}, \mathrm{Et}_{2} \mathrm{O},-78^{\circ} . \text { ii) } \mathrm{MeOH},-78^{\circ} \text { to r.t., 30: } 70 \%, \mathbf{3 1}: 82 \% \text {. }
$$

${ }^{\text {a }}$) Ligands (e.g., 1) at the Li center are omitted for the sake of clarity.
According to Nakai and co-workers [12], (S)-configured cyclization precursors such as (E / Z)-23 and (Z)-25 do not undergo the 1,3-cycloelimination for steric reasons. This and the improved kinetics for the ring closure by means of the allylic substituent might be a reasonable explanation for the increase in the yields.

[^5]Conclusion. - In summary, we have presented a novel strategy for the enantioselective construction of five-membered carbocycles by fusing the asymmetric deprotonation and the intramolecular carbolithiation. The carbocycles are formed in high regio-, diastereo- (dr $92: 8->98: 2$), and enantioselectivities (er $>99: 1$). As a specific feature of these cyclizations, the intermediate, configurationally labile benzylic lithiumcarbanion pair is diastereoselectively substituted by versatile electrophiles. Additionally, cyclization precursors bearing a functional group in the allylic position were also cyclized with high selectivity and good yields. This method has found further application in the synthesis of heterocycles with an indolizidine core [33].

Experimental Part

General. All reactions were carried out in dried glassware under a static pressure of Ar; the liquids were transferred with syringes or double-ended needles. All solvents for the reactions were dried and distilled prior to use following standard procedures. The solvents for extraction and chromatography were freshly distilled before use. All products were purified by flash column chromatography (FC) on silica gel (Merck, 60-200 mesh). TLC: Merck Kieselgel $60 F_{254}$ plates or Polygram SIL G/UV 254 foils (Macherey, Nagel \& Co.). Starting materials and reagents were purchased from commercial sources and used without further purification unless otherwise noted. (-)-Sparteine (1) is commercially availabe (Aldrich or Sigma) and was stored under Ar; TMEDA was distilled from CaH_{2} and kept under Ar. s - BuLi was received as a 1.4 m soln. in cyclohexane/hexane $92: 8$ from Fluka and was titrated before use [34]. M.p. Gallenkamp MFB 595 apparatus; uncorrected. Optical rotations: Perkin-Elmer 241 polarimeter. IR and FT-IR spectra: Perkin-Elmer IR spectrometer PE 298 and a Nicolet $5 D X C$ spectrometer, resp. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra: Bruker AM 300 instrument; internally referenced to $\mathrm{CHCl}_{3}(7.25 \mathrm{ppm})$ or $\mathrm{CDCl}_{3}(77.0 \mathrm{ppm})$, resp.; the doubling of some signals occurs as a result of the $(E) /(Z)$ isomerism of the carbamate group; these signals are separated by slashes. MS: Finnigan MAT 8230 instrument. Elemental analyses: performed by the Mikroanalytische Abteilung des Organisch-chemischen Institutes der Westfälischen Wilhelms-Universität Münster on a Perkin-Elmer CHN analyser 240.

Typical Procedure for the Bromination of Primary Alkanols (TP 1). 5-Bromopentyl 2,2,4,4-Tetramethyl-1,3-oxazolidine-3-carboxylate (33a). 5-Hydroxypentyl 2,2,4,4-tetramethyl-1,3-oxazolidine-3-carboxylate (32a) [35] $(6.000 \mathrm{~g}, 23.24 \mathrm{mmol})$ and $\mathrm{CBr}_{4}(9.207 \mathrm{~g}, 27.76 \mathrm{mmol}, 1.2$ equiv. $)$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$. At 0°, PPh_{3} ($7.282 \mathrm{~g}, 27.76 \mathrm{mmol}, 1.2$ equiv.) was added in portions within 20 min . After further 10 min at 0°, the mixture was allowed to warm to ambient temp. and the volatiles were removed under reduced pressure. The residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$, and the white precipitate was filtered off and washed with $\mathrm{Et}_{2} \mathrm{O}(4 \times 50 \mathrm{ml})$. The filtrate was concentrated in vacuo and the resulting crude product was purified by $\mathrm{FC}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $1: 3$, $R_{\mathrm{f}} 0.29$) furnishing 33a ($7.203 \mathrm{~g}, 97 \%$). Colorless oil. IR (neat): $1680 s(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $1.37 / 1.42(s, 6 \mathrm{H}) ; 1.53 / 1.56(s, 6 \mathrm{H}) ; 1.54(\mathrm{~m}, 2 \mathrm{H}) ; 1.70(\mathrm{~m}, 2 \mathrm{H}) ; 1.91(t t, J=6.4,6.9,2 \mathrm{H}) ; 3.42(t, J=6.7,2 \mathrm{H})$; $3.73(s, 2 \mathrm{H}) ; 4.10(t, J=6.4,2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 24.1 / 25.3 / 26.5 ; 24.8 ; 28.1 ; 32.2 ; 33.4 ; 59.6 / 60.5$; 64.0; 76.1/76.3; 94.8/95.8; 152.1/152.8. Anal. calc. for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{BrNO}_{3}$ (322.24): C 48.46, H 7.51, N 4.35; found: C 48.68, H 7.60, N 4.40 .
[5-(2,2,4,4-Tetramethyl-1,3-oxazolidine-3-carbonyloxy)pentyl]triphenylphosphonium Bromide (3a). A vigorously stirred mixture of $\mathbf{3 3 a}(8.811 \mathrm{~g}, 27.34 \mathrm{mmol})$ and $\mathrm{Ph}_{3} \mathrm{P}(7.530 \mathrm{~g}, 28.71 \mathrm{mmol}, 1.05$ equiv. $)$ was kept at 100° for 5 h without any solvent. The highly viscous mixture was cooled to r.t., and the glass-like crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$. To this soln., $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{ml})$ was added, giving rise to a white precipitate of 3a. After decanting the solvents, this procedure was repeated twice to provide $\mathbf{3 a}(15.154 \mathrm{~g}, 95 \%)$ as a white solid, which was dried in vacuo. M.p. 158°. IR (KBr): $1680 s(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.32 / 1.39(s, 6 \mathrm{H})$; $1.47 / 1.52(s, 6 \mathrm{H}) ; 1.74(m, 6 \mathrm{H}) ; 3.70(s, 2 \mathrm{H}) ; 3.80(m, 2 \mathrm{H}) ; 4.02(t, J=6.2,2 \mathrm{H}) ; 7.70-7.89(m, 15 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 22.0 ; 22.5(d, J=50) ; 23.9 / 25.1 / 26.3 ; 26.6 ; 28.2 ; 59.4 / 60.2 ; 63.5 ; 75.8 / 76.0 ; 94.5 / 95.4$; $117.3 ; 118.5 ; 130.2 ; 130.4 ; 133.3 ; 133.4 ; 134.8 ; 151.8 / 152.5$. Anal. calc. for $\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{BrNO}_{3} \mathrm{P}$ (584.53): C 63.70, H 6.72, N 2.40 ; found: C 63.51, H 6.88, N 2.36 .

3,3-Dimethyl-5-hydroxypentyl 2,2,4,4-Tetramethyl-1,3-oxazolidine-3-carboxylate (32b). A suspension of $\mathrm{NaH}(1.377 \mathrm{~g}, 34.44 \mathrm{mmol}$, 0.55 equiv., 60% in mineral oil) in THF (30 ml) was treated 10 min with 3,3-dimethylpentane-1,5-diol $\mathbf{2 b}$ [14] $(8.277 \mathrm{~g}, 62.61 \mathrm{mmol})$. After stirring for 2 h at r.t., 2,2,4,4-tetramethyl-1,3-oxazolidine-3-carbonyl chloride (Cby-Cl) [17] $(6.000 \mathrm{~g}, 31.31 \mathrm{mmol}, 0.50$ equiv. $)$ was added. The mixture was
heated at reflux for 5 h and then cooled to r.t. The resulting white suspension was poured into $2 \mathrm{~N} \mathrm{HCl}(20 \mathrm{ml})$ and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$, the org. layer was separated, and the aq. phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{ml})$. The combined org. phases were washed with sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{ml})$ and brine $(10 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvents were evaporated under reduced pressure. The purification by $\mathrm{FC}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $\left.4: 1, R_{\mathrm{f}} 0.39\right)$ provided 32b ($6.851 \mathrm{~g}, 76 \%$). Colorless oil. IR (neat): $3430 \mathrm{~s}(\mathrm{br} ., \mathrm{OH}), 1685 \mathrm{~s}(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.97$ $(s, 6 \mathrm{H}) ; 1.36 / 1.42(s, 6 \mathrm{H}) ; 1.52 / 1.56(s, 6 \mathrm{H}) ; 1.57(t, J=7.4,2 \mathrm{H}) ; 1.64(m, 3 \mathrm{H}) ; 3.72(s, 2 \mathrm{H}) ; 3.72(t, J=7.4$, $2 \mathrm{H}) ; 4.15(t, J=8.0,2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 24.1 / 25.3 / 26.5 ; 27.6 ; 31.5 ; 40.4 ; 44.5 ; 59.4 ; 59.6 / 60.6$; 61.7; 76.1/76.3; 94.8/95.8; 153.2. Anal. calc. for $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{NO}_{4}$ (287.40): C 62.69, H 10.17, N 4.87 ; found: C 62.60, H 10.32, N 5.09.

5-Bromo-3,3-dimethylpentyl 2,2,4,4-Tetramethyl-1,3-oxazolidine-3-carboxylate (33b). According to TP 1, a soln. of $\mathbf{3 2 b}(7.000 \mathrm{~g}, 24.36 \mathrm{mmol})$ and $\mathrm{CBr}_{4}(9.693 \mathrm{~g}, 29.23 \mathrm{mmol}, 1.2$ equiv. $)$ were reacted with $\mathrm{PPh}_{3}(7.666 \mathrm{~g}$, $29.23 \mathrm{mmol}, 1.2$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$. The crude product was purified by $\mathrm{FC}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $1: 5 ; R_{\mathrm{f}} 0.49$ in $\mathrm{Et}_{2} \mathrm{O} /$ hexanes $1: 3$) to yield 33b $(7.657 \mathrm{~g}, 90 \%)$. Colorless oil. IR (neat): $1690 \mathrm{~s}(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 0.97(s, 6 \mathrm{H}) ; 1.36 / 1.42(s, 6 \mathrm{H}) ; 1.52 / 1.56(s, 6 \mathrm{H}) ; 1.62(m, 2 \mathrm{H}) ; 1.89(m, 2 \mathrm{H}) ; 3.39(m, 2 \mathrm{H}) ; 3.72$ $(s, 2 \mathrm{H}) ; 4.14(t, J=8.0,2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 24.1 / 25.3 / 26.6 ; 26.8 ; 28.7 ; 33.5 ; 40.1 ; 45.9 ; 59.6 / 60.6$; 61.3; 76.1/76.4; 94.8/95.8; 152.8. Anal. calc. for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{BrNO}_{3}$ (350.30): C 51.43, H 8.06, N 4.00 ; found: C 51.44, H 8.23, N 4.34.
[3,3-Dimethyl-5-(2,2,4,4-tetramethyl-1,3-oxazolidine-3-carbonyloxy)pentyl]triphenylphosphonium Bromide ($\mathbf{3 b} \mathbf{b})$. A mixture of $\mathbf{3 3 b}(6.000 \mathrm{~g}, 17.13 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(4.717 \mathrm{~g}, 17.99 \mathrm{mmol}, 1.05$ equiv.) was heated to 100° at an Ar pressure of 200 bar in an autoclave for 21 h . After cooling to ambient temp., the crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$, and $\mathbf{3 b}$ was precipitated by the addition of $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{ml})$. The solvents were decanted, and this procedure was repeated twice, affording impure $\mathbf{3 b}$ as a highly viscous foam. Further purification by $\mathrm{FC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1, R_{\mathrm{f}} 0.36-0.10\right)$ gave $\mathbf{3 b}(4.267 \mathrm{~g}, 41 \%)$. Foaming, hygroscopic solid. M.p. 60°. IR (KBr): $1675 s(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.06(s, 6 \mathrm{H}) ; 1.33 / 1.39(s, 6 \mathrm{H}) ; 1.49 / 1.52$ $(s, 6 \mathrm{H}) ; 1.56-1.70(m, 4 \mathrm{H}) ; 3.61(m, 2 \mathrm{H}) ; 3.71(s, 2 \mathrm{H}) ; 3.99(t, J=7.7,2 \mathrm{H}) ; 7.71-7.90(m, 15 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $18.5(d, J=52) ; 23.9 / 25.1 / 26.2 ; 26.8 ; 33.1 ; 34.0 ; 39.3 ; 59.6 / 60.4 ; 60.8 ; 75.8 / 76.2 ; 94.6 / 95.5$; $117.2 ; 118.4 ; 130.4 ; 130.5 ; 133.4 ; 133.5 ; 135.1 ; 152.2 / 152.9$. Anal. calc. for $\mathrm{C}_{33} \mathrm{H}_{43} \mathrm{BrNO}_{3} \mathrm{P}$ (612.59): C 64.70 , H 7.08, N 2.29 ; found: C 64.51, H 6.95, N 1.89 .

3,3-Dimethyl-5-oxopentyl 2,2,4,4-Tetramethyl-1,3-oxazolidine-3-carboxylate (4b). At 0°, 32b $(6.360 \mathrm{~g}$, $22.13 \mathrm{mmol})$, dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$, was slowly added to a suspension of PCC $(7.155 \mathrm{~g}, 33.19 \mathrm{mmol}$, 1.5 equiv.) and $\mathrm{AcONa}(0.545 \mathrm{~g}, 6.64 \mathrm{mmol}, 0.3$ equiv. $)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$. After 150 min at r.t., the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{ml})$ and filtered through a short silica-gel column. The silica gel was washed with $\mathrm{Et}_{2} \mathrm{O}$ $(4 \times 50 \mathrm{ml})$, and the combined phases were again filtered through a silica-gel column. The volatiles were removed in vacuo, affording $\mathbf{4 b}(5.517 \mathrm{~g}, 87 \%)$. Colorless oil. $R_{\mathrm{f}}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes in $\left.1: 1\right) 0.32$. IR (neat): 1715 s $(\mathrm{C}=\mathrm{O}), 1690 s(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.12(s, 6 \mathrm{H}) ; 1.36 / 1.42(s, 6 \mathrm{H}) ; 1.51 / 1.56(s, 6 \mathrm{H}) ; 1.76$ $(m, 2 \mathrm{H}) ; 2.34(d, J=2.9,2 \mathrm{H}) ; 3.73(s, 2 \mathrm{H}) ; 4.17(t, J=7.6,2 \mathrm{H}) ; 9.86(t, J=2.9,1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 24.1 / 25.3 / 26.5 ; 27.3 ; 27.5 ; 32.5 ; 40.7 ; 54.9 ; 59.6 / 60.6 ; 61.1 ; 76.0 / 76.3 ; 94.8 / 95.8 ; 152.7 ; 202.5$. Anal. calc. for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{NO}_{4}$ (285.38): C 63.13, H 9.54, N 4.91; found: C 62.82, H 9.54, N 5.03.
(Z)-6-Phenylhex-5-enyl 2,2,4,4-Tetramethyl-1,3-oxazolidine-3-carboxylate ((Z)-5a). To a suspension of 3a ($7.600 \mathrm{~g}, 13.00 \mathrm{mmol}, 1.3$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}(45 \mathrm{ml}), t-\mathrm{BuOK}(1.347 \mathrm{~g}, 12.00 \mathrm{mmol}, 1.2$ equiv. $)$ was added, and the resulting mixture was heated under reflux for 2 h . Subsequently, the mixture was cooled to -40°, treated with $\mathrm{PhCHO}(1.061 \mathrm{~g}, 10.00 \mathrm{mmol})$, and stirred for further 5 min at this temp. Before the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$ at r.t., the mixture was stirred at ambient temp. for 30 min and heated at reflux for another 30 min . The org. layer was separated, the aq. phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 40 \mathrm{ml})$, and the combined org. phases were dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed in vacuo, and the residue was purified by $\mathrm{FC}\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{hexanes} 1: 5\right.$, $R_{\mathrm{f}} 0.40$), affording $(Z)-5 \mathbf{a}(2.849 \mathrm{~g}, 86 \%,(E) /(Z) 4: 96)$. Colorless oil. IR (neat): $1680 \mathrm{~s}(\mathrm{C}=\mathrm{O})$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1.35/1.42 ($s, 6 \mathrm{H}$); 1.51/1.56 ($s, 6 \mathrm{H}$); $1.53(m, 2 \mathrm{H}) ; 1.69(m, 2 \mathrm{H}) ; 2.37(d d t, J=7.2, J=1.6$, $7.4,2 \mathrm{H}) ; 3.72(s, 2 \mathrm{H}) ; 4.08(t, J=6.3,2 \mathrm{H}) ; 5.65(d t, J=11.6,7.2,1 \mathrm{H}) ; 6.44(d, J=11.6,1 \mathrm{H}) ; 7.15-7.37$ $(m, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 24.1 / 25.3 / 26.6 ; 26.6 ; 28.2 ; 28.7 ; 59.6 / 60.5 ; 64.4 ; 76.1 / 76.3 ; 94.8 / 95.8$; $126.5 ; 128.1 ; 128.6 ; 129.3 ; 132.2 ; 137.6 ; 152.9$. Anal. calc. for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{3}(331.46)$: C 72.47, H 8.82, N 4.23 ; found: C 72.58, H 8.97, N 4.45.
(E)-6-Phenylhex-5-enyl 2,2,4,4-Tetramethyl-1,3-oxazolidine-3-carboxylate $((E)$-5a). A soln. of (Z)-5a $(0.220 \mathrm{~g}, 0.66 \mathrm{mmol})$ and $\mathrm{I}_{2}(0.003 \mathrm{~g}, 0.01 \mathrm{mmol})$ in hexane $(3 \mathrm{ml})$ was stirred for 6 days at ambient temp. Then, a small amount of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ was added, and the mixture was stirred for 1 h until complete bleaching of the soln. The solids were filtered off, and the volatiles were removed in vacuo. The crude product was purified by FC ($\mathrm{Et}_{2} \mathrm{O} /$ hexanes $1: 5, R_{\mathrm{f}} 0.40$) to give $(E)-5 \mathrm{a}(0.172 \mathrm{~g}, 78 \%,(E) /(Z) 95: 5)$. Colorless oil. IR (neat): $1686 s$
$(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.37 / 1.42(s, 6 \mathrm{H}) ; 1.53 / 1.56(s, 6 \mathrm{H}) ; 1.57(m, 2 \mathrm{H}) ; 1.72(m, 2 \mathrm{H}) ; 2.26$ $(d d t, J=6.8,1.1,7.2,2 H) ; 3.72(s, 2 H) ; 4.12(t, J=6.4,2 H) ; 6.20(d t, J=15.7,6.8,1 \mathrm{H}) ; 6.40(d, J=15.7,1 \mathrm{H})$; $7.15-7.35(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 24.2 / 25.3 / 26.6 ; 26.0 ; 28.5 ; 32.5 ; 59.6 / 60.5 ; 64.3 ; 76.2 / 76.4 ; 94.8 /$ $95.8 ; 125.9 ; 126.9 ; 128.5 ; 130.2 ; 130.4 ; 137.7 ; 152.7 / 153.6$. Anal. calc. for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{3}$ (331.46): C 72.47, H 8.82, N 4.23; found: C 72.37, H 8.90, N 4.46.
(Z)-3,3-Dimethyl-6-phenylhex-5-enyl 2,2,4,4-Tetramethyl-1,3-oxazolidine-3-carboxylate ((Z)-5b). At r.t., 3b ($3.000 \mathrm{~g}, 4.90 \mathrm{mmol}$, 1.1 equiv.) , dissolved in THF $(20 \mathrm{ml})$, was deprotonated with NaHMDS (4.70 ml , $4.70 \mathrm{mmol}, 1.05$ equiv., 1 m in THF). After stirring for 20 min at r.t., the orange-red mixture was cooled to -50° and reacted with $\mathrm{PhCHO}(0.472 \mathrm{~g}, 4.45 \mathrm{mmol})$. The mixture was kept at -50° for further 15 min and then allowed to warm to r.t.; $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$ was added after 1 h at r.t. The org. layer was separated, the aq. phase extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{ml})$, and the combined org. phases were dried $\left(\mathrm{MgSO}_{4}\right)$. The solvents were evaporated under reduced pressure, and the resulting crude product was purified by $\mathrm{FC}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $1: 10$, $R_{\mathrm{f}} 0.43$ in $\mathrm{Et}_{2} \mathrm{O} /$ hexanes in $\left.1: 5\right):(Z)-5 \mathbf{b}(0.910 \mathrm{~g}, 57 \%,(E) /(Z)$-ratio $4: 96)$. Colorless oil. IR (neat): $1690 s$ $\left.(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.95(s, 6 \mathrm{H}) ; 1.34 / 1.41(s, 6 \mathrm{H}) ; 1.50 / 1.55(s, 6 \mathrm{H}) ; 1.62(m, 2 \mathrm{H}) ; 2.27(d d, J=$ $7.4,1.8,2 \mathrm{H}) ; 3.71(s, 2 \mathrm{H}) ; 4.08(t, J=7.9,2 \mathrm{H}) ; 5.74(d t, J=11.9,7.4,1 \mathrm{H}) ; 6.54(d, J=11.9,1 \mathrm{H}) ; 7.16-7.37$ $(m, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 24.2 / 25.3 / 26.6 ; 27.0 ; 27.5 ; 32.8 ; 40.0 ; 40.4 ; 59.6 / 60.6 ; 61.8 ; 76.1 / 76.4 ; 94.8 /$ $95.8 ; 126.5 ; 128.1 ; 128.7 ; 129.7 ; 130.7 ; 137.7 ; 153.0$. Anal. calc. for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}_{3}(359.51)$: C 73.50, H 9.25, N 3.90 ; found: C 73.26, H 9.12, N 4.15 .
(E/Z)-3,3-Dimethyl-6-phenylhex-5-enyl 2,2,4,4-Tetramethyl-1,3-oxazolidine-3-carboxylate ((E/Z)-5b). To a suspension of $\mathrm{BnPPh}_{3} \mathrm{Br}\left(3.250 \mathrm{~g}, 7.50 \mathrm{mmol}, 1.5\right.$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{ml})$, NaHMDS $(6.50 \mathrm{ml}, 6.50 \mathrm{mmol}$, 1.3 equiv., 1 m in THF) was added dropwise at r.t. The orange mixture was stirred for 1 h , cooled to -40°, and treated with $\mathbf{4 b}(1.427 \mathrm{~g}, 5.00 \mathrm{mmol})$, dissolved in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{ml})$. The reaction mixture was stirred for another 60 min at this temp. and allowed to warm to r.t. overnight. The reaction was terminated by the addition of $\mathrm{H}_{2} \mathrm{O}$ $(50 \mathrm{ml})$, the org. layer was separated, the aq. phase extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{ml})$, and the combined org. phases were dried $\left(\mathrm{MgSO}_{4}\right)$. The volatiles were evaporated under reduced pressure, and the residue was purified by $\mathrm{FC}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $1: 10, R_{\mathrm{f}} 0.43$ in $\mathrm{Et}_{2} \mathrm{O} /$ hexanes in $\left.1: 5\right):(E)-\mathbf{5 b} /(Z)-\mathbf{5 b}(1.460 \mathrm{~g}, 81 \%,(E) /(Z)$ ratio 54 : 46). Colorless oil. IR (neat): $\left.1690 s(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{14}\right): 0.99[0.95](s, 6 \mathrm{H}) ; 1.35 /$ 1.43 [1.34/1.41] ($s, 6 \mathrm{H}$); 1.51/1.57 [1.50/1.55] $(s, 6 \mathrm{H}) ; 1.62(m, 2 \mathrm{H}) ; 2.15$ [2.27] $(d d, J=7.4,0.7[J=7.4,1.8]$, $2 \mathrm{H}) ; 3.72$ [3.71] ($s, 2 \mathrm{H}) ; 4.18[4.08](t, J=7.9[J=7.9], 2 \mathrm{H}) ; 6.24[5.74](d t, J=15.8,7.4[J=11.9,7.4], 1 \mathrm{H})$; $\left.6.39[6.54](d, J=15.8[J=11.9], 1 \mathrm{H}) ; 7.16-7.37(m, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{14}\right): 24.2 / 25.3 / 26.6$; 27.0; 27.5; 33.1 [32.8]; 40.2 [40.0]; 45.8 [40.4]; 59.6/60.6; 61.8; 76.1/76.4; 94.8/95.8; 126.0 [126.5]; 127.0 [128.1]; 128.5 [128.7]; 128.8 [129.7]; 132.6 [130.7]; 137.7; 153.0. Anal. calc. for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}_{3}$ (359.51): C 73.50, H 9.25, N 3.90; found: C 73.41, H 9.26, N 4.20.

Typical Procedure for the Stereoselective Intramolecular Carbolithiation (TP 2). (-)-(1R,2S)-2-Benzylcyclopentyl 2,2,4,4-Tetramethyl-1,3-oxazolidine-3-carboxylate (8a). At -78°, a soln. of (Z)-5a (0.166 g , $0.50 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{ml})$ was treated with $s-\mathrm{BuLi}(0.53 \mathrm{ml}, 0.75 \mathrm{mmol}, 1.5$ equiv., 1.4 m$)$ in the presence of (-)-sparteine (1) $(0.176 \mathrm{~g}, 0.75 \mathrm{mmol}, 1.5$ equiv.). The mixture was stirred for 20 h at this temp. before quenching with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{ml})$. The org. layer was separated, the aq. phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{ml})$, and the combined org. phases were dried $\left(\mathrm{MgSO}_{4}\right)$. The evaporation of the solvents in vacuo gave a crude product, which was purified by FC $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $1: 10 ; R_{\mathrm{f}} 0.43$ in $\mathrm{Et}_{2} \mathrm{O} /$ hexanes $\left.1: 3\right)$. The carbocycle $\mathbf{8 a}$ $(0.050 \mathrm{~g}, 30 \%, \mathrm{dr}>99: 1)$ was isolated as a colorless oil next to $(Z)-5 \mathbf{a}(0.053 \mathrm{~g}, 32 \%) \cdot[\alpha]_{\mathrm{D}}^{\text {r.t. }}=-20.9(c=0.98$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (neat): $1680 s(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.28-1.56(m, 12 \mathrm{H}) ; 1.64-1.87(m, 5 \mathrm{H})$; $2.03(m, 1 \mathrm{H}) ; 2.26(m, 1 \mathrm{H}) ; 2.45(d d, J=9.7,13.5,1 \mathrm{H}) ; 2.91(d d, J=5.1,13.5,1 \mathrm{H}) ; 3.71(s, 2 \mathrm{H}) ; 4.90$ $(d d d, J=6.7,4.0,5.1,1 \mathrm{H}) ; 7.14-7.30(m, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 22.2 ; 24.2 / 25.4 / 26.6 ; 29.5 ; 31.8$; $39.4 ; 47.2 ; 59.5 / 60.5 ; 76.1 / 76.3 ; 80.9 ; 94.7 / 95.8 ; 125.9 ; 128.3 ; 128.8 ; 140.9 ; 152.5$. Anal. calc. for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{3}$ (331.46): C 72.47, H 8.82, N 4.23; found: C 72.56, H 8.86, N 4.29.
(-)-(1R,2S)-2-Benzyl-4,4-dimethylcyclopentyl 2,2,4,4-Tetramethyl-1,3-oxazolidine-3-carboxylate (8b). According to $T P 2,(Z)-5 \mathbf{b}(0.120 \mathrm{~g}, 0.33 \mathrm{mmol})$ was cyclized in the presence of $\mathbf{1}(0.117 \mathrm{~g}, 0.50 \mathrm{mmol}, 1.5$ equiv. $)$ in $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{ml})$ by treatment with $s-\mathrm{BuLi}(0.40 \mathrm{ml}, 0.50 \mathrm{mmol}, 1.5$ equiv., 1.39 m$)$ for 8 h . The purification of the crude product by $\mathrm{FC}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $1: 10 ; R_{\mathrm{f}} 0.43$ in $\mathrm{Et}_{2} \mathrm{O} /$ hexanes $\left.1: 3\right)$ afforded a mixture of $\mathbf{8 b}(0.060 \mathrm{~g}, 50 \%$, $\mathrm{dr}>99: 1)$ and $(Z)-\mathbf{5 b}(0.036 \mathrm{~g}, 30 \%)$. In analogy to $T P 2,(E)-\mathbf{5 b} /(Z)-\mathbf{5 b}(0.180 \mathrm{~g}, 0.50 \mathrm{mmol})$ was treated with $s-\operatorname{BuLi}(0.56 \mathrm{ml}, 0.75 \mathrm{mmol}, 1.5$ equiv., 1.34 m$)$ in the presence of $\mathbf{1}\left(0.176 \mathrm{~g}, 0.75 \mathrm{mmol}, 1.5\right.$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}$ $(3 \mathrm{ml})$ for 23 h . The crude product was purified by $\mathrm{FC}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $1: 10 ; R_{\mathrm{f}} 0.43$ in $\mathrm{Et}_{2} \mathrm{O} /$ hexanes $\left.1: 3\right)$,

[^6]yielding 0.111 g of a mixture of $\mathbf{8 b}(0.092 \mathrm{~g}, 51 \%, \mathrm{dr}>99: 1)$ and $(E / Z)-\mathbf{5 b}(0.019 \mathrm{~g}, 11 \%) \cdot[\alpha]_{\mathrm{D}}^{\text {rt. }}=-29.0(c=$ $\left.1.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (neat): $1685 s(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.03(s, 3 \mathrm{H}) ; 1.04(s, 3 \mathrm{H}) ; 1.19(d d, J=$ $11.0,12.9,1 \mathrm{H}) ; 1.33-1.45(m, 6 \mathrm{H}) ; 1.49-1.57(m, 7 \mathrm{H}) ; 1.62(d d, J=12.9,7.9,1 \mathrm{H}) ; 2.02(d d, J=8.1,13.6$, $1 \mathrm{H}) ; 2.42(m, 1 \mathrm{H}) ; 2.54(d d, J=9.1,13.1,1 \mathrm{H}) ; 2.94(m, 1 \mathrm{H}) ; 3.69(s, 2 \mathrm{H}) ; 4.95(d d d, J=7.6,6.2,8.1,1 \mathrm{H})$; $7.14-7.35$ (m, 5 H) . ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 24.2/25.3/26.5; 30.3; 30.8; 36.3; 40.2; 45.2; 46.9; 47.1; 59.5/ $60.5 ; 76.1 / 76.3 ; 80.2 ; 94.7 / 95.8 ; 125.8 ; 128.3 ; 128.7 ; 141.0 ; 152.6$. Anal. calc. for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}_{3}$ (359.51): C 73.50, H 9.25, N 3.90; found: C 73.36, H 9.31, N 4.19.
exo-6-Phenylbicyclo[3.1.0]hexane (9). In accordance with $T P 2,(Z)-5 a(0.166 \mathrm{~g}, 0.50 \mathrm{mmol})$ was reacted with s - $\operatorname{BuLi}(0.54 \mathrm{ml}, 0.75 \mathrm{mmol}, 1.5$ equiv., 1.39 m$)$ in the presence of TMEDA ($0.078 \mathrm{~g}, 0.75 \mathrm{mmol}, 1.5$ equiv.) instead of $\mathbf{1}$ in $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{ml})$ for 4 h . The crude product was purified by $\mathrm{FC}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $\left.1: 5, R_{\mathrm{f}} 0.74\right)$ providing $9(0.074 \mathrm{~g}, 93 \%$, $\mathrm{dr}>99: 1)$. Colorless liquid. IR (neat): $3050 w(\mathrm{C}-\mathrm{H}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.27$ $(m, 1 \mathrm{H}) ; 1.54(m, 2 \mathrm{H}) ; 1.59-1.69(m, 2 \mathrm{H}) ; 1.72-1.85(m, 2 \mathrm{H}) ; 1.87-1.94(m, 2 \mathrm{H}) ; 6.98-7.01(m, 2 \mathrm{H})$; $7.06-7.11(m, 1 \mathrm{H}) ; 7.17-7.23(m, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 21.1 ; 23.7 ; 28.0 ; 29.6 ; 124.9 ; 125.4 ; 128.1$; 143.7. HR-EI-MS calc. for $\mathrm{C}_{12} \mathrm{H}_{14}$ (158.24): 158.10955 ; found: 158.10950 .
(-)-(1R,2S)-2-Benzylcyclopentanol (10a). A soln. of $\mathbf{8 a}(0.077 \mathrm{~g}, 0.23 \mathrm{mmol})$ in $\mathrm{MeOH}(3 \mathrm{ml})$ was reacted with $\mathrm{MeSO}_{3} \mathrm{H}\left(10 \mu \mathrm{l}, 0.15 \mathrm{mmol}, 0.65\right.$ equiv.) and heated at reflux for 150 min . Subsequently, $\mathrm{K}_{2} \mathrm{CO}_{3}(0.064 \mathrm{~g}$, $0.46 \mathrm{mmol}, 2.0$ equiv.) was added, and the mixture was stirred at reflux for another 210 min . After cooling to r.t., the mixture was concentrated in vacuo, and the crude product was dissolved in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$. The etheral soln. was filtered to remove the solids, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and again concentrated under reduced pressure. The residue was purified by $\mathrm{FC}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $\left.1: 1, R_{\mathrm{f}} 0.34\right)$, providing $10 \mathrm{a}(0.038 \mathrm{~g}, 93 \%)$. Colorless oil. The spectroscopic data were identical with those previously reported in [19]. [$\alpha]_{\mathrm{D}}^{\text {r.t. }}=-43.1(c=1.09, \mathrm{MeOH}) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.20(m, 1 \mathrm{H}) ; 1.48-2.05(m, 6 \mathrm{H}) ; 1.46($ br. $s, 1 \mathrm{H}) ; 2.52(d d, J=8.3,13.6,1 \mathrm{H}) ; 2.75$ $(d d, J=6.9,13.6,1 \mathrm{H}) ; 3.89(d d d, J=5.5,5.5,6.5,1 \mathrm{H}) ; 7.15-7.36(m, 5 \mathrm{H})$.
(-)-(1R,2S)-2-Benzylcyclopentyl Acetate (11a). At r.t., $10 \mathrm{a}(0.037 \mathrm{~g}, 0.21 \mathrm{mmol})$ was treated wtih $\mathrm{Ac}_{2} \mathrm{O}$ $(0.074 \mathrm{~g}, 0.63 \mathrm{mmol}, 3.0$ equiv. $)$ in the presence of cat. amounts of DMAP [36] ($0.004 \mathrm{~g}, 0.03 \mathrm{mmol})$ in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$ and pyridine $(0.5 \mathrm{ml})$. The mixture was stirred for 2 h at ambient temp., the reaction was subsequently quenched with 2 N HCl , and the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{ml})$. The org. layer was separated, the aq. phase extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{ml})$, and the combined org. phases were dried $\left(\mathrm{MgSO}_{4}\right)$. The volatiles were removed under reduced pressure, and the crude product was purified by $\mathrm{FC}\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{hexanes}\right.$ $\left.1: 5, R_{\mathrm{f}} 0.45\right)$: $\mathbf{1 1 a}\left(0.041 \mathrm{~g}, 90 \%\right.$, er $\left.>98: 2^{15}\right)$. Colorless oil. The spectroscopic data were identical with those previously reported in [19]. [$\alpha]_{\mathrm{D}}^{\text {r.t. }}=-6.4(c=0.94, \mathrm{MeOH}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.27(m, 1 \mathrm{H}) ; 1.55-$ $2.10(m, 5 \mathrm{H}) ; 1.94(s, 3 \mathrm{H}) ; 2.25(m, 1 \mathrm{H}) ; 2.50(d d, J=9.1,13.6,1 \mathrm{H}) ; 2.81(d d, J=6.1,13.6,1 \mathrm{H}) ; 4.85$ ($d d d, J=4.3,5.5,6.9,1 \mathrm{H}) ; 7.15-7.37(m, 5 \mathrm{H})$.
(1R,2S)-2-[(R/S)-(Deutero)(phenyl)methyl]cyclopentyl 2,2,4,4-Tetramethyl-1,3-oxazolidine-3-carboxylate (12a). Following $T P 2,(Z)-5 a(0.166 \mathrm{~g}, 0.50 \mathrm{mmol})$ and $\mathbf{1}\left(0.176 \mathrm{~g}, 0.75 \mathrm{mmol}, 1.5\right.$ equiv.), dissolved in $\mathrm{Et}_{2} \mathrm{O}$ $(3 \mathrm{ml})$ were treated with s - $\mathrm{BuLi}\left(0.57 \mathrm{ml}, 0.75 \mathrm{mmol}, 1.5\right.$ equiv., 1.31 m) for 22 h . After deuterolysis with $\mathrm{CH}_{3} \mathrm{OD}$ $(0.2 \mathrm{ml})$, stirring for 30 min , and addition of $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{ml})$, the crude product was purified by $\mathrm{FC}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes 1:10). The carbocycle 12a $(0.032 \mathrm{~g}, 19 \%$, dr $67: 33$, epimers at PhCD$)$ was isolated as a colorless oil next to a mixture of the deuterated cyclization precursor $(Z)-5 a$ and $\mathbf{1 2 a}(0.070 \mathrm{~g})$. The spectral data were identical with those for 8a except for the following signals: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 2.44(d, J=9.8,0.33 \mathrm{H}) ; 2.89(d, J=$ $4.8,0.67 \mathrm{H})$.
(-)-(1R,2R)-2-[(1S)-1-Phenyl-1-(trimethylsilyl)methyl]cyclopentyl 2,2,4,4-Tetramethyl-1,3-oxazolidine-3carboxylate (13a). According to $T P 2,(Z)-5 \mathbf{a}(0.331 \mathrm{~g}, 1.00 \mathrm{mmol})$ was cyclized in the presence of $\mathbf{1}(0.352 \mathrm{~g}$, $1.50 \mathrm{mmol}, 1.5$ equiv.) with $s-\mathrm{BuLi}(1.15 \mathrm{ml}, 1.50 \mathrm{mmol}, 1.5$ equiv., 1.30 m$)$ in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{ml})$ at -78° for 26 h . Then, $\mathrm{Me}_{3} \mathrm{SiCl}(0.32 \mathrm{ml}, 1.50 \mathrm{mmol}, 1.5$ equiv.) was added at this temp. The mixture was allowed to stir for further 5 h at -78° before warming to ambient temp. and quenching with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$. The crude product was purified by FC $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $\left.1: 10, R_{\mathrm{f}} 0.32\right)$ yielding $13 \mathrm{a}(0.129 \mathrm{~g}, 32 \%, \mathrm{dr}>98: 2)$. Colorless needles. Compound 9 was detected by TLC. M.p. $81^{\circ} .[\alpha]_{\mathrm{D}}^{\text {r.t. }}=-66.2\left(c=1.02, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (neat): $1685 s(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 0.00(s, 9 \mathrm{H}) ; 1.29-1.40(m, 6 \mathrm{H}) ; 1.42-1.50(m, 6 \mathrm{H}) ; 1.52-1.85(m, 5 \mathrm{H}) ; 1.98(d, J=11,1 \mathrm{H}) ; 2.11$ $(m, 1 \mathrm{H}) ; 2.61(m, 1 \mathrm{H}) ; 3.70(s, 2 \mathrm{H}) ; 4.89(d d d, J=3.2,5.5,7.8,1 \mathrm{H}) ; 7.04-7.11(m, 2 \mathrm{H}) ; 7.18(m, 2 \mathrm{H}) ; 7.36$
${ }^{15}$) The enantiomeric ratio was determined by NMR-shift experiments using $\mathrm{CDCl}_{3}(0.5 \mathrm{ml})$ as a solvent: $\left.a\right)$ enantiomerically enriched sample: 11a $(19.0 \mathrm{mg})$ and $(+)-\left[\mathrm{Eu}(\mathrm{hfc})_{3}\right] \quad(21.8 \mathrm{mg}, 21 \mathrm{~mol}-\%) ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $(300 \mathrm{MHz}): 3.92 ; b)$ racemic sample: rac-11a [19][20] (19.5 mg) and $(+)-\left[\mathrm{Eu}(\mathrm{hfc})_{3}\right](23.5 \mathrm{mg}, 22 \mathrm{~mol}-\%)$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz): 3.90 and 3.92 .
$(m, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-1.2 ; 23.7 ; 24.2 / 25.3 / 25.6 / 26.7 ; 32.2 ; 32.3 ; 41.4 ; 47.3 ; 59.2 / 60.2 ; 76.1 / 76.3$; 81.5; 94.4/95.7; 124.7; 128.3; 128.4; 143.4; 151.8. Anal. calc. for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{NO}_{3} \mathrm{Si}$ (403.64): C 68.44, H 9.24, N 3.47; found: C 68.61, H 9.50, N 3.72.
(-)-(1R,2R)-2-[(1S)-1-Phenyl-1-(trimethylstannyl)methyl]cyclopentyl 2,2,4,4-Tetramethyl-1,3-oxazolidine-3-carboxylate (14a). Following TP 2, (Z)-5a ($0.166 \mathrm{~g}, 0.50 \mathrm{mmol}$) was treated with s - $\mathrm{BuLi}(0.55 \mathrm{ml}, 0.75 \mathrm{mmol}$, 1.5 equiv., 1.36 m$)$ in the presence of $\mathbf{1}(0.176 \mathrm{~g}, 0.75 \mathrm{mmol}, 1.5$ equiv. $)$ in $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{ml})$ at -78° for 23 h . Then $\mathrm{Me}_{3} \mathrm{SnCl}\left(1.00 \mathrm{ml}, 1.00 \mathrm{mmol}\right.$, 2.0 equiv., 1.0 m in hexane) was added at -78°. The mixture was stirred for further 4 h at this temp., warmed to r.t., and the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(2.5 \mathrm{ml})$. The crude product was purified by FC ($\mathrm{AcOEt} /$ hexanes $1: 20 ; R_{\mathrm{f}} 0.36$ in $\mathrm{Et}_{2} \mathrm{O} /$ hexanes $1: 5$), affording $\mathbf{1 4 a}(0.067 \mathrm{~g}, 27 \%, \mathrm{dr}>98: 2)$. Colorless solid. Compound 9 was detected by TLC. M.p. 85°. $[\alpha]_{\mathrm{D}}^{\mathrm{rtt}}=-78.0\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (neat): $1685 s$ $(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-0.01(\mathrm{~s}, 9 \mathrm{H}) ; 1.25-1.38(m, 6 \mathrm{H}) ; 1.40-1.52(m, 7 \mathrm{H}) ; 1.62-1.80$ $(m, 3 \mathrm{H}) ; 1.89(m, 1 \mathrm{H}) ; 2.09(m, 1 \mathrm{H}) ; 2.44(d, J=11.4,1 \mathrm{H}) ; 2.75(m, 1 \mathrm{H}) ; 3.66(s, 2 \mathrm{H}) ; 4.85(d d d, J=2.7$, $3.5,5.9,1 \mathrm{H}) ; 6.97-7.05(m, 3 \mathrm{H}) ; 7.10-7.20(m, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-9.2 ; 23.0 ; 24.1 / 25.4 / 26.6$; $32.0 ; 32.7 ; 40.6 ; 48.3 ; 59.3 ; 76.1 / 76.3 ; 81.5 ; 95.5 ; 124.0 ; 126.9 ; 128.3 ; 145.2 ; 151.2 / 152.2$. Anal. calc. for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{NO}_{3} \mathrm{Sn}$ (494.26): C 55.89, H 7.55, N 2.83; found: C 56.10, H 7.54, N 2.92 .
(-)-(1R,2R)-2-[(S)-Phenyl(tributylstannyl)methyl]cyclopentyl 2,2,4,4-Tetramethyl-1,3-oxazolidine-3-carboxylate (15a) and (+)-(1S,5Z)-6-Phenyl-1-(tributylstannyl)hex-5-enyl 2,2,4,4-Tetramethyl-1,3-oxazolidine-3carboxylate ($(Z)-\mathbf{2 0 a})$. In analogy to $T P 2,(Z)-5 \mathbf{a}(0.663 \mathrm{~g}, 2.00 \mathrm{mmol})$ was reacted with s-BuLi $(2.29 \mathrm{ml}$, $3.00 \mathrm{mmol}, 1.5$ equiv., 1.31 m$)$ in the presence of $1(0.703 \mathrm{~g}, 3.00 \mathrm{mmol}, 1.5$ equiv. $)$ in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$ at -78° for 4 h . Then, $\mathrm{Bu}_{3} \mathrm{SnCl}$ ($0.89 \mathrm{ml}, 3.30 \mathrm{mmol}, 1.65$ equiv.) was added at -78°, and the mixture was warmed to r.t. before quenching with $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{ml})$. The crude product was purified by $\mathrm{FC}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $1: 10 ; R_{\mathrm{f}} 0.40$ for $\mathbf{1 5 a}$ and $R_{\mathrm{f}} 0.57$ for (Z)-20a) affording $\mathbf{1 5 a}(0.169 \mathrm{~g}, 14 \%, \mathrm{dr}>98: 2$). Colorless oil. The open-chain product (Z)-20a $(0.910 \mathrm{~g}, 73 \%)$ was also isolated as a colorless oil.

Data of 15a: $[\alpha]_{\mathrm{D}}^{\mathrm{rtt}}=-80.7\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (neat): $1690 s(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.75$ $(t, J=8.1,6 \mathrm{H}) ; 0.84(t, J=7.1,9 \mathrm{H}) ; 1.17-1.49(m, 25 \mathrm{H}) ; 1.64-1.81(m, 3 \mathrm{H}) ; 1.88(m, 1 \mathrm{H}) ; 2.09(m, 1 \mathrm{H})$; $2.45(d, J=11.7,1 \mathrm{H}) ; 2.79(\mathrm{~m}, 1 \mathrm{H}) ; 3.66(\mathrm{~s}, 2 \mathrm{H}) ; 4.82(d d d, J=2.6,3.1,5.5,1 \mathrm{H}) ; 6.92-7.03(\mathrm{~m}, 3 \mathrm{H}) ; 7.11-$ $7.18(m, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 10.0 ; 13.6 ; 22.9 ; 24.1 / 25.3 / 26.6 ; 27.4 ; 29.0 ; 31.8 ; 32.7 ; 40.1 ; 48.3 ; 59.2 /$ $60.3 ; 76.3 / 76.6 ; 81.4 ; 94.5 / 95.7 ; 123.8 ; 127.1 ; 128.3 ; 145.5 ; 151.3 / 152.1$. Anal. calc. for $\mathrm{C}_{32} \mathrm{H}_{55} \mathrm{NO}_{3} \mathrm{Sn}(620.50)$: C 61.94, H 8.93, N 2.26; found: C 61.97, H 9.05, N 2.61.

Data of (Z)-20a: $[\alpha]_{\mathrm{D}}^{\text {r.t. }}=+19.2\left(c=2.18, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (neat): $1670 \mathrm{~s}(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $0.87(m, 6 \mathrm{H}) ; 0.88(t, J=7.1,9 \mathrm{H}) ; 1.24-1.54(m, 26 \mathrm{H}) ; 1.79(m, 1 \mathrm{H}) ; 1.91(m, 1 \mathrm{H}) ; 2.36(m, 2 \mathrm{H}) ; 3.71$ $(s, 2 \mathrm{H}) ; 4.71(m, 1 \mathrm{H}) ; 5.64(d t, J=7.3,11.7,1 \mathrm{H}) ; 6.42(d, J=11.7,1 \mathrm{H}) ; 7.17-7.34(m, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.8; 13.7; 24.2/25.4/26.6;27.5; 28.3; 28.6; $29.1 ; 34.3 ; 59.4 / 60.5 ; 71.3 ; 76.2 / 76.4 ; 94.6 / 95.8 ; 125.9$; 128.1; 128.7; 129.2; 132.5; 137.7; 152.9/153.3.
(-)-(1R,2R)-2-[(S)-(Dimethylphenylsilyl)(phenyl)methyl]cyclopentyl 2,2,4,4-Tetramethyl-1,3-oxazoli-dine-3-carboxylate (16a). Following $T P 2$, (Z) -5a ($0.331 \mathrm{~g}, 1.00 \mathrm{mmol}$) was cyclized with s-BuLi $(1.14 \mathrm{ml}$, $1.50 \mathrm{mmol}, 1.5$ equiv., 1.32 m$)$ in the presence of $\mathbf{1}\left(0.352 \mathrm{~g}, 1.50 \mathrm{mmol}, 1.5\right.$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{ml})$ at -78° for 24 h . Then, $\mathrm{PhMe}_{2} \mathrm{SiCl}\left(0.30 \mathrm{ml}, 1.50 \mathrm{mmol}, 1.5\right.$ equiv.) was added at -78°, and the reaction mixture was warmed to r.t. before quenching with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$. The crude product was purified by $\mathrm{FC}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $1: 10 ; R_{\mathrm{f}} 0.28$ in $\mathrm{Et}_{2} \mathrm{O} /$ hexanes $\left.1: 5\right)$ affording $16 \mathrm{a}(0.177 \mathrm{~g}, 38 \%, \mathrm{dr}>98: 2)$. Colorless oil. Compound 9 was detected by TLC. In a second experiment, $(E)-5 \mathbf{a}(0.133 \mathrm{~g}, 0.40 \mathrm{mmol})$ was treated with s - $\mathrm{BuLi}(0.46 \mathrm{ml}, 0.60 \mathrm{mmol}, 1.5$ equiv., $1.30 \mathrm{~m})$ in the presence of $\mathbf{1}(0.141 \mathrm{~g}, 0.60 \mathrm{mmol}, 1.5$ equiv. $)$ in $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{ml})$ for 20 h at -78°. After the addition of $\mathrm{PhMe}_{2} \mathrm{SiCl}\left(0.102 \mathrm{~g}, 0.60 \mathrm{mmol}, 1.5\right.$ equiv.) , at -78°, the mixture was warmed to ambient temp., and $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{ml})$ was added. Purification as described above gave 16a ($0.068 \mathrm{~g}, 36 \%$, $\mathrm{dr}>98: 2$), besides $9(0.026 \mathrm{~g}, 41 \%)$. $[\alpha]_{\mathrm{D}}^{\text {rt. }}=-79.7\left(c=0.97, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (neat): $1685 s(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.08(s, 3 \mathrm{H}) ; 0.32$ ($s, 3 \mathrm{H}$) ; 1.26/1.31 ($s, 6 \mathrm{H}$) ; 1.41/1.45 ($s, 6 \mathrm{H}$) ; 1.50-1.72 ($\mathrm{m}, 5 \mathrm{H}$); $1.90(m, 1 \mathrm{H}) ; 2.19(d, J=11.0,1 \mathrm{H}) ; 2.57$ $(m, 1 \mathrm{H}) ; 3.64(s, 2 \mathrm{H}) ; 4.81(d d d, J=2.9 \mathrm{~Hz}, J=3.1 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.96(m, 2 \mathrm{H}) ; 7.04(m, 1 \mathrm{H}) ; 7.15$ $(m, 2 \mathrm{H}) ; 7.26-7.34(m, 3 \mathrm{H}) ; 7.41-7.44(m, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-4.2 ;-1.9 ; 23.6 ; 24.1 / 25.3 /$ $26.7 ; 32.0 ; 32.2 ; 41.1 ; 47.2 ; 59.2 / 60.5 ; 76.1 / 76.4 ; 81.5 ; 94.6 / 96.1 ; 124.9 ; 127.6 ; 128.1 ; 128.7 ; 128.9 ; 134.0 ; 138.7$; 142.7; 152.1. Anal. calc. for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{NO}_{3} \mathrm{Si}$ (465.71): C 72.21, H 8.44, N 3.01; found: C 72.29, H 8.49, N 3.26.
(+)-(1R,2S)-2-[(S)-(Methoxycarbonyl)(phenyl)methyl]cyclopentyl 2,2,4,4-Tetramethyl-1,3-oxazolidine-3carboxylate (17a). In analogy to $T P 2,(Z)-5 a(0.166 \mathrm{~g}, 0.50 \mathrm{mmol})$ was treated with $s-\mathrm{BuLi}(0.58 \mathrm{ml}, 0.75 \mathrm{mmol}$, 1.5 equiv., 1.30 m) in the presence of $1\left(0.176 \mathrm{~g}, 0.75 \mathrm{mmol}, 1.5\right.$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{ml})$ at -78° for 20 h . At this temp., a dry stream of CO_{2} was bubbled through the mixture for 5 min . The mixture was kept at -78° for further 15 min and was then allowed to warm to r.t. After the addition of $2 \mathrm{~N} \mathrm{HCl}(2 \mathrm{ml})$, the org. layer was separated, the aq. phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{ml})$, and the combined org. phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The
solvents were removed in vacuo, and the residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}(83 \mathrm{ml})$. At r.t., a soln. of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in $\mathrm{Et}_{2} \mathrm{O}$ was slowly added to this soln. until the color remained yellow. The mixture was stirred for 1 h , treated with silica gel $(0.050 \mathrm{~g})$, and stirred for another 15 min . After filtration and concentration under reduced pressure, the crude product was purified by $\mathrm{FC}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $\left.1: 3, R_{\mathrm{f}} 0.25\right)$. The carbocycle $\mathbf{1 7 a}(0.069 \mathrm{~g}, 35 \%, \mathrm{dr} 97: 3)$ and the open-chain ester (Z)-21a ($0.068 \mathrm{~g}, 35 \%$) were isolated as a chromatographically inseparable mixture $(0.137 \mathrm{~g}, 70 \%)$. To isolate pure $\mathbf{1 7 a}$, the mixture was dissolved in t - $\mathrm{BuOH}(1 \mathrm{ml})$. At 0°, this soln. was added dropwise to a suspension of $A D-m i x-\alpha(0.225 \mathrm{~g})$ in $t-\mathrm{BuOH}(1.0 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{ml})$. This procedure was repeated twice in intervals of 24 h before the reaction mixture was filtered. The aq. phase was extracted wtih $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{ml})$. The combined org. phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the volatiles were removed in vacuo. The crude product was purified by $\mathrm{FC}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $\left.1: 3\right)$, affording pure $\mathbf{1 7 a}(0.063 \mathrm{~g}, 32 \%$, dr $97: 3)$. Colorless, sticky oil. $[\alpha]_{\mathrm{D}}^{\text {rt. }}=+6.8\left(c=1.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (neat): $1730 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1685 s(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.85(m, 1 \mathrm{H}) ; 1.26-1.32(m, 6 \mathrm{H}) ; 1.38-1.45(m, 6 \mathrm{H}) ; 1.67-1.76(m, 3 \mathrm{H}) ; 1.89(m, 1 \mathrm{H})$; $2.07(m, 1 \mathrm{H}) ; 2.73(m, 1 \mathrm{H}) ; 3.48(d, J=10.7,1 \mathrm{H}) ; 3.63(s, 2 \mathrm{H}) ; 3.65(s, 3 \mathrm{H}) ; 4.84(d d d, J=6.2,4.1,2.9,1 \mathrm{H})$; $7.18-7.35(m, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 23.1 ; 24.0 / 25.3 / 25.5 / 26.7 ; 30.2 ; 32.9 ; 48.6 ; 51.8 ; 55.4 ; 59.3 / 60.4$; $76.0 / 76.3 ; 78.6 ; 95.0 / 95.6 ; 127.4 ; 128.4 ; 128.6 ; 137.4 ; 151.0 / 151.7 ; 173.6$. Anal. calc. for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}_{5}$ (389.49): C 67.84, H 8.02, N 3.60; found: C 68.13, H 8.25, N 3.64.
(1R,2S)-2-[(R/S)-(Deutero)(phenyl)methyl]-4,4-dimethylcyclopentyl 2,2,4,4-Tetramethyl-1,3-oxazolidine-3-carboxylate ($\mathbf{1 2 b}$). In analogy to $T P 2,(E / Z)-\mathbf{5 b}(0.180 \mathrm{~g}, 0.50 \mathrm{mmol})$ and $\mathbf{1}(0.176 \mathrm{~g}, 0.75 \mathrm{mmol}, 1.5$ equiv.) , dissolved in $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{ml})$, were treated with $s-\mathrm{BuLi}(0.57 \mathrm{ml}, 0.75 \mathrm{mmol}, 1.5$ equiv., 1.31 m$)$ for 26 h at -78°. The reaction was quenched with $\mathrm{CH}_{3} \mathrm{OD}(0.2 \mathrm{ml})$, the mixture was stirred for further 30 min , and was hydrolyzed with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{ml})$. The purification by $\mathrm{FC}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $\left.1: 20\right)$ gave a mixture of $\mathbf{1 2 b}$ and $(E / Z)-\mathbf{5 b}(0.118 \mathrm{~g}$, ratio $84: 16$), which corresponds to a yield of 55% of $\mathbf{1 2 b}$ (dr $43: 57$, epimers at $\mathrm{Ph} C$). The spectral data were identical with those for $\mathbf{8 b}$ except for the following signals: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 2.53(d, J=9.1$, $0.43 \mathrm{H}), 2.92(m, 0.57 \mathrm{H})$.
(-)-(1R,2R)-4,4-Dimethyl-2-[(S)-(phenyl)(trimethylsilyl)methyl]cyclopentyl 2,2,4,4-Tetramethyl-1,3-oxa-zolidine-3-carboxylate (13b). Following $T P 2,(E / Z) \mathbf{- 5 b}(0.360 \mathrm{~g}, 1.00 \mathrm{mmol})$ was treated with $s-\mathrm{BuLi}$ $(1.15 \mathrm{ml}, 1.50 \mathrm{mmol}, 1.5$ equiv., 1.30 m$)$ in the presence of $\mathbf{1}(0.352 \mathrm{~g}, 1.50 \mathrm{mmol}, 1.5$ equiv. $)$ in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{ml})$ at -78° for 26 h . Then, $\mathrm{Me}_{3} \mathrm{SiCl}\left(0.32 \mathrm{ml}, 1.50 \mathrm{mmol}, 1.5\right.$ equiv.) was added at -78°. The mixture was stirred for further 5 h at this temp., warmed to r.t., and the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$. The residue was purified by $\mathrm{FC}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $1: 10 ; R_{\mathrm{f}} 0.33$ in $\mathrm{Et}_{2} \mathrm{O} /$ hexanes $\left.1: 5\right)$ affording $\mathbf{1 3 b}(0.162 \mathrm{~g}, 38 \%, \mathrm{dr}>98: 2)$ in a mixture with $(E / Z) \mathbf{- 5 b}(0.039 \mathrm{~g}, 11 \%)$. The chromatographic purification was repeated, yielding $\mathbf{1 3 b}(0.122 \mathrm{~g}$, $28 \%, \mathrm{dr}>98: 2)$. Colorless oil. $[\alpha]_{\mathrm{D}}^{\text {r.t. }}=-47.5\left(c=1.03, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (neat): $1685 \mathrm{~s}(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right):-0.05(s, 9 \mathrm{H}) ; 1.06(s, 3 \mathrm{H}) ; 1.13(s, 3 \mathrm{H}) ; 1.19-1.43(m, 14 \mathrm{H}) ; 1.82(d d, J=14.0,8.2,1 \mathrm{H}) ; 1.88$ $(d d d, J=12.4,7.4,2.1,1 \mathrm{H}) ; 2.02(d, J=10.5,1 \mathrm{H}) ; 2.77(m, 1 \mathrm{H}) ; 3.61(s, 2 \mathrm{H}) ; 5.02(d d d, J=3.2,5.7,8.2,1 \mathrm{H})$; 6.98-7.03 ($m, 3 \mathrm{H}$); 7.12-7.18 (m, 2 H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: -1.1; 24.2/25.6/25.8/26.9; 28.9; 30.1; $37.9 ; 42.8 ; 47.2 ; 47.4 ; 47.8 ; 59.1 / 60.4 ; 76.0 / 76.6 ; 81.8 ; 93.9 / 95.8 ; 124.6 ; 128.1 ; 128.8 ; 143.6 ; 150.9 / 151.8$. Anal. calc. for $\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{NO}_{3} \mathrm{Si}$ (431.69): C 69.56, H 9.57, N 3.24; found: C 69.90, H 9.33, N 3.72.
(-)-(1R,2R)-4,4-Dimethyl-2-[(S)-(phenyl)(trimethylstannyl)methyl]cyclopentyl 2,2,4,4-Tetramethyl-1,3-oxazolidine-3-carboxylate (14b). According to $T P 2,(Z) \mathbf{- 5 b}(0.180 \mathrm{~g}, 0.50 \mathrm{mmol})$ was treated with $s-\mathrm{BuLi}$ $(0.57 \mathrm{ml}, 0.75 \mathrm{mmol}, 1.5$ equiv., 1.31 m$)$ in the presence of $\mathbf{1}(0.176 \mathrm{~g}, 0.75 \mathrm{mmol}, 1.5$ equiv. $)$ in $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{ml})$ at -78° for 23 h . Then, $\mathrm{Me}_{3} \mathrm{SnCl}\left(0.75 \mathrm{ml}, 0.75 \mathrm{mmol}, 1.5\right.$ equiv., 1 m in hexane) was added at -78°. The mixture was stirred for further 30 min at this temp., and the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{ml})$. The crude product was purified by FC $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $1: 10 ; R_{\mathrm{f}}=0.43$ in AcOEt/hexanes $\left.1: 10\right)$, providing $\mathbf{1 4 b}(0.088 \mathrm{~g}, 34 \%$, dr $>98: 2)$ in a mixture with $(Z)-5 b(0.023,13 \%)$. The mixture was again subjected to FC (AcOEt/hexanes $1: 10$) yielding 14b $(0.064 \mathrm{~g}, 25 \%$, dr $>98: 2)$. Colorless oil. $[\alpha]_{\mathrm{D}}^{\text {r.t. }}=-80.7\left(c=0.88, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (neat): $1685 s$ $(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-0.01(s, 9 \mathrm{H}) ; 1.07(s, 3 \mathrm{H}) ; 1.13(\mathrm{~s}, 3 \mathrm{H}) ; 1.18-1.54(\mathrm{~m}, 14 \mathrm{H}) ; 1.88$ $(d d d, J=13.3,7.4,1.7,1 \mathrm{H}) ; 1.92(d d, J=14.1,8.1,1 \mathrm{H}) ; 2.54(d, J=10.3,1 \mathrm{H}) ; 2.92(m, 1 \mathrm{H}) ; 3.61(s, 2 \mathrm{H}) ; 4.99$ $(d d d, J=4.4,6.3,8.1,1 \mathrm{H}) ; 6.92-7.18(m, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-9.0 ; 24.2 / 25.3 / 25.6 / 26.7 ; 29.6$; $30.5 ; 37.1 ; 41.6 ; 47.3 ; 48.7 ; 48.8 ; 59.2 / 60.3 ; 76.0 / 76.6 ; 81.8 ; 95.0 / 95.8 ; 123.9 ; 127.3 ; 128.3 ; 145.5 ; 151.3 / 152.3$. Anal. calc. for $\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{NO}_{3} \mathrm{Sn}$ (522.30): C 57.49, H 7.91, N 2.68; found: C 57.83, H 7.79, N 3.02 .
(-)-(1R,2R)-4,4-Dimethyl-2-[(S)-(phenyl)(tributylstanyl)methyl]cyclopentyl 2,2,4,4-Tetramethyl-1,3-oxa-zolidine-3-carboxylate (15b). In accordance with $T P 2,(E / Z)-\mathbf{5 b}(0.180 \mathrm{~g}, 0.50 \mathrm{mmol})$ was reacted with $s-\mathrm{BuLi}$ $(0.77 \mathrm{ml}, 1.00 \mathrm{mmol}, 2.0$ equiv., 1.31 m$)$ in the presence of $\mathbf{1}(0.176 \mathrm{~g}, 0.75 \mathrm{mmol}, 1.5$ equiv. $)$ in $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{ml})$ at -78° for 24 h . Then, $\mathrm{Bu} \mathrm{u}_{3} \mathrm{SnCl}\left(0.30 \mathrm{ml}, 1.12 \mathrm{mmol}, 2.25\right.$ equiv.) was added at -78°. The mixture was stirred for another 1 h at this temp., and the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{ml})$. The crude product was purified by FC ($\mathrm{Et}_{2} \mathrm{O} /$ hexanes $1: 10 ; R_{\mathrm{f}} 0.46$ in $\mathrm{Et}_{2} \mathrm{O} /$ hexanes $1: 5$), giving $\mathbf{1 5 b}(0.097 \mathrm{~g}, 30 \%$, dr $>98: 2)$, besides $(E / Z)-\mathbf{5 b}$
$(0.012 \mathrm{~g}, 7 \%)$ as a colorless oil. $[\alpha]_{\mathrm{D}}^{\text {r.t. }}=-79.4\left(c=1.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (neat): $1690 \mathrm{~s}(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 0.75(t, J=8.1,6 \mathrm{H}) ; 0.84(t, J=7.2,9 \mathrm{H}) ; 1.07(s, 3 \mathrm{H}) ; 1.13(s, 3 \mathrm{H}) ; 1.17-1.50(m, 26 \mathrm{H}) ; 1.88$ $(m, 1 \mathrm{H}) ; 1.92(d d, J=14.0,8.2,1 \mathrm{H}) ; 2.56(d, J=10.7,1 \mathrm{H}) ; 2.97(m, 1 \mathrm{H}) ; 3.62(s, 2 \mathrm{H}) ; 4.95(d d d, J=4.3,5.9$, $7.9,1 \mathrm{H}) ; 6.93(\mathrm{~m}, 1 \mathrm{H}) ; 7.00(\mathrm{~m}, 2 \mathrm{H}) ; 7.12(m, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 10.1 ; 13.6 ; 24.2 / 25.3 / 27.0$; $27.8 ; 29.2 ; 29.6 ; 30.4 ; 37.1 ; 41.3 ; 47.4 ; 48.8 ; 48.8 ; 59.2 / 60.4 ; 76.0 / 76.4 ; 81.9 ; 95.8 ; 123.8 ; 127.5 ; 128.2 ; 145.8 ; 151.7 /$ 152.6. Anal. calc. for $\mathrm{C}_{34} \mathrm{H}_{59} \mathrm{NO}_{3} \mathrm{Sn}$ (648.56): C 62.97, H 9.17, N 2.16; found: C 63.29, H 9.38, N 2.46 .
(-)-(1R,2R)-2-[(S)-(Dimethylphenylsilyl)(phenyl)methyl]-4,4-dimethylcyclopentyl 2,2,4,4-Tetramethyl-1,3-oxazolidine-3-carboxylate (16b). According to $T P 2,(E / Z)-5 \mathbf{b}(0.360 \mathrm{~g}, 1.00 \mathrm{mmol})$ was treated with s $\operatorname{BuLi}(1.15 \mathrm{ml}, 1.50 \mathrm{mmol}, 1.5$ equiv., 1.30 m$)$ in the presence of $\mathbf{1}\left(0.352 \mathrm{~g}, 1.50 \mathrm{mmol}, 1.5\right.$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{ml})$ at -78° for 24 h . Then, $\mathrm{PhMe}{ }_{2} \mathrm{SiCl}(0.26 \mathrm{ml}, 1.50 \mathrm{mmol}, 1.5$ equiv. $)$ was added at -78°. The mixture was allowed to warm to ambient temp. overnight, and the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$. The crude product was purified by FC ($\mathrm{Et}_{2} \mathrm{O} /$ hexanes $1: 20$ to $1: 10 ; R_{\mathrm{f}} 0.36$ in $\mathrm{Et}_{2} \mathrm{O} /$ hexanes $1: 5$) providing $\mathbf{1 6 b}(0.239 \mathrm{~g}, 48 \%$, dr $>98: 2)$. Colorless oil. $[\alpha]_{\mathrm{D}}^{\text {r.t. }}=-59.4\left(c=0.96, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (neat): $16.85 s(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 0.12(s, 3 \mathrm{H}) ; 0.29(s, 3 \mathrm{H}) ; 0.81(s, 3 \mathrm{H}) ; 0.93(s, 3 \mathrm{H}) ; 0.98-1.30(m, 14 \mathrm{H}) ; 1.61(d d, J=13.7,8.3$, $1 \mathrm{H}) ; 1.65(\mathrm{~m}, 1 \mathrm{H}) ; 2.17(d, J=10.5,1 \mathrm{H}) ; 2.62(\mathrm{~m}, 1 \mathrm{H}) ; 3.48(\mathrm{~s}, 2 \mathrm{H}) ; 4.84(d d d, J=3.6,5.2,8.3,1 \mathrm{H}) ; 6.81-$ $7.01(m, 5 \mathrm{H}) ; 7.15-7.30(m, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-3.7 ;-1.9 ; 24.2 / 25.3 / 25.7 / 26.8 ; 28.9 ; 30.0$; $37.8 ; 42.6 ; 47.1 ; 47.3 ; 47.7 ; 59.1 / 60.3 ; 76.0 / 76.3 ; 81.7 ; 94.0 / 95.6 ; 124.7 ; 127.5 ; 128.0 ; 128.8 ; 128.9 ; 134.1 ; 138.3$; 142.9; 151.3/152.0. Anal. calc. for $\mathrm{C}_{30} \mathrm{H}_{43} \mathrm{NO}_{3} \mathrm{Si}$ (493.76): C 72.98, H 8.78, N 2.84 ; found: C 73.98, H 8.89, N 3.02.
(+)-(1R,2S)-2-[(S)-(Methoxycarbonyl)(phenyl)methyl]-4,4-dimethylcyclopentyl 2,2,4,4-Tetramethyl-1,3-oxazolidine-3-carboxylate (17b). In analogy to $T P 2,(Z)-\mathbf{5 b}(0.180 \mathrm{~g}, 0.50 \mathrm{mmol})$ was treated with $s-\mathrm{BuLi}$ $(0.57 \mathrm{ml}, 0.75 \mathrm{mmol}, 1.5$ equiv., 1.31 m$)$ in the presence of $\mathbf{1}\left(0.176 \mathrm{~g}, 0.75 \mathrm{mmol}, 1.5\right.$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{ml})$ at -78° for 23 h . As described for 17a, a dry stream of CO_{2} was bubbled through the mixture, the mixture was kept at -78° for further 15 min , and was allowed to warm to r.t. $2 \mathrm{~N} \mathrm{HCl}(3 \mathrm{ml})$ was added, the org. layer separated, the aq. phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{ml})$, and the combined org. phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvents were removed in vacuo, and the residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{ml})$. A soln. of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in $\mathrm{Et}_{2} \mathrm{O}$ was slowly added to this soln. at r.t. until the color remained yellow. The reaction mixture was stirred for 30 min , treated with silica gel $(0.050 \mathrm{~g})$, and stirred for another 15 min . After filtration and concentration under reduced pressure, the crude product was purified by $\mathrm{FC}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $1: 10 ; R_{\mathrm{f}} 0.26$ in $\mathrm{Et}_{2} \mathrm{O} /$ hexanes $\left.1: 3\right)$: 17b $(0.105 \mathrm{~g}, 50 \%$, dr $92: 8)$ together with $(Z)-\mathbf{5 b}(0.012 \mathrm{~g}, 7 \%)$ as a colorless oil. The same experiment was conducted with $(E / Z) \mathbf{- 5 b}$ affording $\mathbf{1 7 b}(0.090 \mathrm{~g}, 43 \%, \mathrm{dr} 92: 8)$ together with $(E / Z)-\mathbf{5 b}(0.029 \mathrm{~g}, 16 \%) .[\alpha]_{\mathrm{D}}^{\text {r.t. }}=$ $+19.2\left(c=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (neat): $1735 s(\mathrm{C}=\mathrm{O}), 1685 s(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.06(s, 6 \mathrm{H})$; $1.11 / 1.16(s, 6 \mathrm{H}) ; 1.24 / 1.30(s, 6 \mathrm{H}) ; 1.40-1.43(m, 2 \mathrm{H}) ; 1.85-1.95(m, 2 \mathrm{H}) ; 2.91(m, 1 \mathrm{H}) ; 3.54(d, J=10.5$, $1 \mathrm{H}) ; 3.58 / 3.59(s, 2 \mathrm{H}) ; 3.65(s, 3 \mathrm{H}) ; 5.06(d d d, J=8.1,6.2,4.1,1 \mathrm{H}) ; 7.16-7.36(m, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, CDCl_{3}): 24.1/25.3/26.8; 28.9; 29.9; 37.4; 45.2; 47.7; 48.5; 51.8; 56.6; 59.2/60.4; 75.9/76.3; 78.3; 95.7; 127.3; 128.4; 128.6; 137.5; 151.6; 173.7. Anal. calc. for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{NO}_{5}$ (417.55): C 69.04, H 8.45, N 3.35; found: C 69.27, H 8.48, N 3.49.
(-)-(1R,2R)-2-[(S)-(Dimethylphenylsilyl)(phenyl)methyl]cyclopentanol (18a). Compound 16a (0.193 g, 0.41 mmol) was dissolved in $\mathrm{MeOH}(5 \mathrm{ml})$. After adding $\mathrm{MeSO}_{3} \mathrm{H}(0.040 \mathrm{~g}, 0.42 \mathrm{mmol}, 1.0$ equiv. $)$, the mixture was refluxed for 4 h . Subsequently, $\mathrm{K}_{2} \mathrm{CO}_{3}(0.172 \mathrm{~g}, 1.25 \mathrm{mmol}, 3.0$ equiv.) was added, and the mixture was heated under reflux for another 14 h . The suspension was cooled to r.t. and filtered to remove the solids which were washed with $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{ml})$. The filtrate was concentrated under reduced pressure, and the residue was purified by $\mathrm{FC}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $\left.1: 1, R_{\mathrm{f}} 0.51\right)$, affording $18 \mathbf{a}(0.115 \mathrm{~g}, 89 \%)$. Colorless oil. $[\alpha]_{\mathrm{D}}^{\text {r.t. }}=-81.9(c=0.52$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (neat): $3380 s\left(\right.$ br., OH), $1685 s(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.00(s, 3 \mathrm{H}) ; 0.19(s, 3 \mathrm{H})$; 0.87 (br. $s, 1 \mathrm{H}) ; 1.00(m, 1 \mathrm{H}) ; 1.30-1.66(m, 4 \mathrm{H}) ; 1.82(m, 1 \mathrm{H}) ; 2.02(d, J=11.7,1 \mathrm{H}) ; 2.19(m, 1 \mathrm{H}) ; 3.69$ $(d d d, J=4.7,4.7,6.4,1 \mathrm{H}) ; 6.92-7.14(m, 5 \mathrm{H}) ; 7.16-7.33(m, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-4.1 ;-1.9$; $22.6 ; 32.1 ; 33.7 ; 42.3 ; 49.8 ; 80.2 ; 125.2 ; 127.6 ; 128.5 ; 128.9 ; 133.0 ; 134.8 ; 138.5 ; 143.3$. Anal. calc. for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{OSi}$ (310.51): C 77.36, H 8.44; found: C 77.21, H 8.30.
(-)-(1R,2R)-2-[(S)-(Hydroxy)(phenyl)methyl]cyclopentanol (19a). According to the procedure described in [23], a soln. of $18 \mathbf{a}(0.115 \mathrm{~g}, 0.37 \mathrm{mmol})$ In $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ was treated with $\mathrm{HBF}_{4}(102 \mu \mathrm{l}, 0.74 \mathrm{mmol}$, 2.0 equiv., 54% in $\mathrm{Et}_{2} \mathrm{O}$) at 0°. The mixture was stirred for 10 min at 0° and was then stirred for further 30 min at ambient temp. The solvents were removed under reduced pressure, the residue was dissolved in THF (2 ml) and $\mathrm{MeOH}(2 \mathrm{ml})$, and the resulting soln. was reacted with $\mathrm{KF}\left(0.043 \mathrm{~g}, 0.74 \mathrm{mmol}, 2.0\right.$ equiv.) and $\mathrm{KHCO}_{3}(0.370 \mathrm{~g}$, $3.70 \mathrm{mmol}, 10$ equiv.) at 0°. The mixture was kept at this temp. for 15 min before $\mathrm{H}_{2} \mathrm{O}_{2}\left(0.45 \mathrm{ml}, 30 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ was added. The mixture was stirred for another 15 min at 0° and for 4 h at r.t. After the addition of sat. aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}(2 \mathrm{ml})$, the org. layer was separated, the aq. phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 10 \mathrm{ml})$, and the combined org. phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvents were removed in vacuo, and the residue was purified
by FC $\left(\mathrm{Et}_{2} \mathrm{O} ; R_{\mathrm{f}} 0.39\right)$, giving $\mathbf{1 9 a}(=0.037 \mathrm{~g}, 52 \%, \mathrm{dr}>98: 2)$. Colorless crystals $\left.{ }^{9}\right)$. M.p. $107^{\circ} .[\alpha]_{\mathrm{D}}^{\text {r.t. }}=-64.3$ $\left(c=0.61, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$). IR (neat): 3380 s (br., OH); $3280 \mathrm{~s}(\mathrm{OH}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.41-1.60(\mathrm{~m}, 3 \mathrm{H})$; $1.61-1.75(\mathrm{~m}, 2 \mathrm{H}) ; 1.76-1.93(\mathrm{~m}, 2 \mathrm{H}) ; 2.14(\mathrm{~m}, 1 \mathrm{H}) ; 2.24$ (br. $s, 1 \mathrm{H}) ; 3.98(d d d, J=6.7,6.9,6.5,1 \mathrm{H}) ; 4.71$ $(m, 1 \mathrm{H}) ; 7.26-7.37(m, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 21.6 ; 26.2 ; 34.3 ; 54.8 ; 74.9 ; 76.0 ; 126.4 ; 127.8 ; 128.5$; 143.1. HR-EI-MS: calc. for [$\left.\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}-2 \mathrm{H}+2 \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right]$ (336.62): 336.1941; found: 336.1994.
(-)-(4S,5E/Z)-4-(Dibenzylamino)-6-phenylhex-5-enyl 2,2,4,4-Tetramethyl-1,3-oxazolidine-3-carboxylate ($(E / Z)-23)$ [32]. A suspension of $\mathrm{BnPPh}_{3} \mathrm{Br}(1.55 \mathrm{~g}, 3.58 \mathrm{mmol}, 2.0$ equiv.) and t - $\mathrm{BuOK}(0.37 \mathrm{~g}, 3.31 \mathrm{mmol}$, 1.85 equiv.) in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$ was heated under reflux for 2 h . The resulting orange-red mixture was cooled to -18°, and the 22 [29] ($\left.0.81 \mathrm{~g}, 1.79 \mathrm{mmol}\right)$, dissolved in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{ml})$, was injected. After stirring overnight while warming to r.t., the mixture was poured onto sat. $\mathrm{NH}_{4} \mathrm{Cl}$. The org. layer was separated, the aq. phase extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 25 \mathrm{ml})$, and the combined org. phases were washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was evaporated under reduced pressure, and the crude product was purified by $\mathrm{FC}\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{hexanes} 1: 1\right.$, $\left.R_{\mathrm{f}} 0.61\right)$. The mixture $(E / Z)-\mathbf{2 3}(0.75 \mathrm{~g}, 80 \%,(E) /(Z) 72: 28)$ was isolated as a colorless oil. $[\alpha]_{\mathrm{D}}^{\mathrm{rtt}}=-101(c=$ $\left.1.12, \mathrm{CHCl}_{3}\right)$. IR (neat): $\left.1695 \mathrm{~s}(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}^{14}\right)\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.33 / 1.41 / 1.49 / 1.55(4 \mathrm{~s}, 12 \mathrm{H}) ; 1.56-$ $1.65(m, 2 \mathrm{H}) ; 1.67-1.99(m, 2 \mathrm{H}) ; 3.17-3.24(m, 1 \mathrm{H}) ; 3.44$ [3.32] ($d, J=13.8[J=13.6], 2 \mathrm{H}) ; 3.70(s, 2 \mathrm{H})$; 3.87 [3.77] ($d, J=13.8[J=13.6], 2 H) ; 3.94-4.08(m, 2 H) ; 6.22[5.73](d d, J=15.8,8.8[J=11.9,10.6], 1 \mathrm{H})$; $6.39[6.75](d, J=15.8[J=11.9], 1 \mathrm{H}) ; 7.03-7.43(m, 15 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 24.1 / 25.3 / 26.5 ; 25.9$; $26.3 ; 29.3 ; 29.4 ; 53.5 ; 53.8 ; 54.1 ; 59.6 / 60.6 ; 60.2 ; 64.4 ; 76.1 / 76.3 ; 94.7 / 95.7 ; 126.3 ; 126.5 ; 126.7 ; 127.4 ; 127.9 ; 128.0$; $128.2 ; 128.5 ; 128.6 ; 130.5 ; 132.3 ; 133.2 ; 137.0 ; 140.0 ; 140.2 ; 152.0 / 152.8$. Anal. calc. for $\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{3}(526.72)$: C 77.53, H 8.04, N 5.32; found: C 77.19, H 8.02, N 5.38 .
(-)-(4S,5Z)-4-[(tert-Butyl)diphenylsilyloxy]-6-phenylhex-5-enyl 2,2,4,4-Tetramethyl-1,3-oxazolidine-3-carboxylate ($(Z)-\mathbf{2 5})$. At r.t., 24 [29] ($0.300 \mathrm{~g}, 0.51 \mathrm{mmol}$) and quinoline ($0.066 \mathrm{~g}, 0.51 \mathrm{mmol}, 1.0$ equiv.) were dissolved in toluene $(15 \mathrm{ml})$. This soln. was vigorously stirred in the presence of $\mathrm{Pd} / \mathrm{CaCO}_{3} / \mathrm{Pb}$ (Lindlar catalyst) $(0.150 \mathrm{~g})$ under H_{2} for 45 min at r.t. The mixture was filtered, and the filtrate was concentrated in vacuo. The residue was purified by $\mathrm{FC}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $1: 9 ; R_{\mathrm{f}}=0.67$ in $\mathrm{Et}_{2} \mathrm{O} /$ hexanes $\left.1: 1\right)$, affording $(Z)-\mathbf{2 5}(0.270 \mathrm{~g}, 90 \%$, $(E) /(Z)<5: 95)$. Colorless liquid. $[\alpha]_{\mathrm{D}}^{\mathrm{rtt}}=-5.6\left(c=0.52, \mathrm{CHCl}_{3}\right)$. IR (neat): $1700 s(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1.02/1.07 ($s, 9 \mathrm{H}$) ; 1.31/1.41/1.46/1.55 ($4 s, 12 \mathrm{H}$); 1.66 (br. $s, 4 \mathrm{H}$) ; 3.70 ($s, 2 \mathrm{H}$); 3.96 (br. s, $2 \mathrm{H}) ; 4.69-4.76(m, 1 \mathrm{H}) ; 5.73(d d, J=11.8,9.2,1 \mathrm{H}) ; 6.29(d, J=11.8,1 \mathrm{H}) ; 6.78-6.82(m, 2 \mathrm{H}) ; 7.10-7.13$ $(m, 2 \mathrm{H}) ; 7.21-7.27(m, 3 \mathrm{H}) ; 7.30-7.39(m, 3 \mathrm{H}) ; 7.51-7.57(m, 4 \mathrm{H}) ; 7.70-7.73(m, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 19.0/19.3; 24.6; 24.2/25.3/26.6; 27.0; 35.1; 59.6/60.5; 64.6; 69.2; 76.2/76.4; 94.8/95.8; 126.7; $127.3 ; 127.4 ; 127.7 ; 128.0 ; 128.4 ; 128.7 ; 129.4 ; 129.6 ; 134.1 ; 134.8 ; 135.3 ; 135.8 ; 135.9 ; 136.8 ; 152.0 / 152.8$. Anal. calc. for $\mathrm{C}_{36} \mathrm{H}_{47} \mathrm{NO}_{4} \mathrm{Si}$ (585.86): C 73.81, H8.09, N 2.39; found: C 73.67, H 8.08, N 2.29.
(-)-(1R,2R,3S)-2-[(R/S)-(Deutero)(phenyl)methyl]-3-(dibenzylamino)cyclopentyl 2,2,4,4-Tetramethyl-1,3-oxazolidine-3-carboxylate (30). In accordance with $T P 2$, $(E / Z)-\mathbf{2 3}(0.200 \mathrm{~g}, 0.38 \mathrm{mmol})$ was cyclized in the presence of $\mathbf{1}\left(0.133 \mathrm{~g}, 0.57 \mathrm{mmol}, 1.5\right.$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}(8 \mathrm{ml})$ by treatment with $s-\mathrm{BuLi}(0.43 \mathrm{ml}, 0.57 \mathrm{mmol}$, 1.5 equiv., 1.34 m$)$. The reaction was terminated by the addition of $\mathrm{CH}_{3} \mathrm{OD}(1 \mathrm{ml})$ after 18 h . Purification of the crude product by $\mathrm{FC}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $1: 9$ to $1: 1 ; R_{\mathrm{f}} 0.61$ in $\mathrm{Et}_{2} \mathrm{O} /$ hexanes $\left.1: 1\right)$ provided $30(0.136 \mathrm{~g}, 70 \%$, dr $>95: 5$ and dr 50:50 epimers at $\mathrm{Ph} C)$ slightly contaminated with $(E / Z)-23$ (less than $5 \%)$. $\alpha \alpha]_{\mathrm{D}}^{\text {r.t. }}=-12.4(c=$ $0.92, \mathrm{CHCl}_{3}$). IR (neat): $1695 s(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.94-1.85(m, 16 \mathrm{H}) ; 2.20-2.36$ $(m, 1 \mathrm{H}) ; 2.46(d, J=8.2,0.5 \mathrm{H}) ; 2.86-2.97(m, 1 \mathrm{H}) ; 3.00(d, J=4.5,0.5 \mathrm{H}) ; 3.44(d, J=13.8,2 \mathrm{H}) ; 3.61$ (br. s, $2 \mathrm{H}) ; 3.88(d, J=13.8,2 \mathrm{H}) ; 4.79-4.86(m, 1 \mathrm{H}) ; 6.92-6.96(m, 2 \mathrm{H}) ; 7.06-7.40(m, 13 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 20.6; 24.2/25.1/25.3/26.2; 29.5; $37.7(t, J=18.4$); 48.7; 54.9; 59.6/60.3; 63.9; 76.1/76.3; 78.1; $94.8 / 95.8 ; 125.7 ; 126.6 ; 126.9 ; 127.5 ; 128.3 ; 128.8 ; 129.3 ; 140.3 ; 152.1 / 152.9$. Anal. calc. for $\mathrm{C}_{34} \mathrm{H}_{41} \mathrm{DN}_{2} \mathrm{O}_{3}$ (527.73): C 77.38, H 8.02, N 5.31; found: C 77.51, H 8.06, N 5.43.
(-)-(1R,2S,3S)-2-Benzyl-3-[(tert-butyl)diphenylsilyloxy]cyclopentyl 2,2,4,4-Tetramethyl-1,3-oxazolidine-3carboxylate (31). Following TP 2, (Z)-25 ($0.100 \mathrm{~g}, 0.17 \mathrm{mmol}$) was treated with s-BuLi $(0.19 \mathrm{ml}, 0.24 \mathrm{mmol}$, 1.4 equiv., 1.23 M$)$ in the presence of $\mathbf{1}(0.060 \mathrm{~g}, 0.26 \mathrm{mmol}, 1.5$ equiv. $)$ in $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{ml})$ for 22 h . After quenching with $\mathrm{MeOH}(0.5 \mathrm{ml})$, the crude product was purified by $\mathrm{FC}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $1: 9 ; R_{\mathrm{f}}=0.67 \mathrm{in}_{\mathrm{Et}}^{2} \mathrm{O} /$ hexanes $\left.1: 1\right)$, yielding $\mathbf{3 1}(0.082 \mathrm{~g}, 82 \%$, dr $95: 5)$, which was slightly contaminated with $(Z) \mathbf{- 2 5}$ (less than $5 \%)$. $[\alpha]_{\mathrm{D}}^{\text {r.t. }}=-26.6$ $\left(c=0.67, \mathrm{CHCl}_{3}\right)$. IR (neat): $1694 s(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.07 / 1.09(s, 9 \mathrm{H}) ; 1.25-1.91$ $(m, 16 \mathrm{H}) ; 2.30-2.44(m, 1 \mathrm{H}) ; 2.46(d d, J=13.4,8.6,1 \mathrm{H}) ; 2.64(d d, J=13.4,5.8,1 \mathrm{H}) ; 3.66 / 3.67(s, 2 \mathrm{H}) ; 3.92$ $(d d, J=10.3,5.5,1 \mathrm{H}) ; 4.83(d t, J=4.9,6.7,1 \mathrm{H}) ; 7.01-7.04(m, 2 \mathrm{H}) ; 7.09-7.20(m, 3 \mathrm{H}) ; 7.33-7.46(m, 6 \mathrm{H})$; $7.63-7.75(m, 4 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 19.1 ; 24.2 / 25.4 / 26.6 ; 27.0 ; 30.0 ; 32.7 ; 37.9 ; 55.6 ; 59.5 / 60.5 ; 76.2 /$ $76.4 ; 77.9 ; 78.6 ; 94.8 / 95.8 ; 125.9 ; 127.5 ; 128.3 ; 129.0 ; 129.6 ; 134.1 ; 134.8 ; 135.8 ; 140.0 ; 152.0 / 152.8$. Anal. calc. for $\mathrm{C}_{36} \mathrm{H}_{47} \mathrm{NO}_{4} \mathrm{Si}(585.86)$: C 73.81, H 8.09, N 2.39; found: C 73.89, H 7.99, N 2.16 .

We are grateful to the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for generous financial support. M. J. W. would like to thank the Graduiertenkolleg 'Hochreaktive Mehrfachbindungssysteme' and M. O. (Kekulé Fellow 1997-1999) the Fonds der Chemischen Industrie for fellowships.

REFERENCES

[1] K. Ziegler, K. Bähr, Chem. Ber. 1928, 61, 253; K. Ziegler, F. Dersch, H. Wollthan, Liebigs Ann. Chem. 1934, 511, 13; K. Ziegler, H. G. Gellert, ibid. 1950, 567, 195.
[2] I. Marek, J. Chem. Soc., Perkin Trans. 1 1999, 535; I. Marek, J. F. Normant in 'Metal-Catalyzed CrossCoupling Reaction', Eds. F. Diederich, P. J. Stang, Wiley-VCH, Weinheim, 1998, pp. 271-337; P. Knochel in 'Comprehensive Organic Synthesis', Eds. B. M. Trost, I. Fleming, Pergamon Press, New York, 1991, Vol. 4, pp. 865-911.
[3] S. Klein, I. Marek, J.-F. Poisson, J. F. Normant, J. Am. Chem. Soc. 1995, 117, 8853.
[4] C. Mück-Lichtenfeld, H. Ahlbrecht, Tetrahedron 1996, 52, 10025; S. Norsikian, I. Marek, J. F. Normant, Tetrahedron Lett. 1997, 38, 7523; S. Norsikian, I. Marek, J.-F. Poisson, J. F. Normant, J. Org. Chem. 1997, 62, 4898; S. Norsikian, I. Marek, S. Klein, J. F. Poisson, J. F. Normant, Chem. Eur. J. 1999, 5, 2055.
[5] D. Hoppe, F. Hintze, P. Tebben, Angew. Chem. 1990, 102, 1457, ibid. Int. Ed. 1990, 29, 1422; D. Hoppe, T. Hense, Angew. Chem. 1997, 109, 2376, ibid. Int. Ed. 1997, 36, 2282; P. Beak, A. Basu, D. J. Gallagher, Y. S. Park, S. Thayumanavan, Acc. Chem. Res. 1996, 29, 552; D. Hoppe, F. Hintze, P. Tebben, M. Paetow, H. Ahrens, J. Schwerdtfeger, P. Sommerfeld, J. Haller, W. Guarnieri, S. Kolczewski, T. Hense, I. Hoppe, Pure Appl. Chem. 1994, 66, 1479.
[6] V. N. Drozd, U. A. Ustynyuk, M. A. Tsel'eva, L. B. Dmitriev, Zh. Obshch. Khim. 1968, 38, 2114; ibid. 1969, 39, 1991.
[7] W. F. Bailey, T. T. Nurmi, J. J. Patricia, W. J. Wang, J. Am. Chem. Soc. 1987, 109, 2442; W. F. Bailey, A. D. Khanolkar, J. Org. Chem. 1990, 55, 6058; W. F. Bailey, A. D. Khanolkar, K. Gavaskar, T. V. Ovaska, K. Rossi, Y. Thiel, K. B. Wiberg, J. Am. Chem. Soc. 1991, 113, 5720; W. F. Bailey, K. V. Gavaskar, Tetrahedron 1994, 50, 5957.
[8] A. Krief, P. Barbeaux, J. Chem. Soc., Chem. Commun. 1987, 1214; A. Krief, P. Barbeaux, Synlett 1990, 511; A. Krief, B. Kenda, B. Remacle, Tetrahedron Lett. 1995, 36, 7917; A. Krief, J. Bousbaa, Synlett 1996, 1007; A. Krief, B. Remacle, W. Dumont, Synlett 1999, 1142; R. W. Hoffmann, R. Koberstein, K. Harms, J. Chem. Soc., Perkin Trans. 2 1999, 183.
[9] I. Coldham, R. Hufton, D. J. Snowden, J. Am. Chem. Soc. 1996, 118, 5322; I. Coldham, J.-C. Fernàndez, D. J. Snowden, Tetrahedron Lett. 1999, 40, 1819.
[10] K. Tomooka, N. Komine, T. Nakai, Tetrahedron Lett. 1997, 38, 8939.
[11] M. J. Woltering, R. Fröhlich, D. Hoppe, Angew. Chem. 1997, 109, 1804, ibid. Int. Ed. 1997, 36, 1764.
[12] K. Tomooka, N. Komine, T. Sasaki, H. Shimizu, T. Nakai, Tetrahedron Lett. 1998, $39,9715$.
[13] R. M. Beesley, C. K. Ingold, J. F. Thorpe, J. Chem. Soc. 1915, 107, 1080; N. L. Allinger, V. Zalkow, J. Org. Chem. 1960, 25, 701; A. J. Kirby, Adv. Phys. Org. Chem. 1980, 17, 183.
[14] H. E. Zimmerman, D. N. Schissel, J. Org. Chem. 1986, 51, 196; A. T. Blomquist, E. S. Wheeler, Y. Chu, J. Am. Chem. Soc. 1955, 77, 6307; J. Houk, G. M. Whitesides, J. Am. Chem. Soc. 1987, 109, 6835.
[15] W. G. Dauben, J. M. Gerdes, R. A. Bunce, J. Org. Chem. 1984, 49, 4293.
[16] M. Schlosser, Top. Curr. Chem. 1970, 5, 1; A. B. Reitz, S. O. Nortey, A. D. Jordan, Jr., M. S. Mutter, B. E. Maryanoff, J. Org. Chem. 1986, 51, 3302; M. Schlosser, B. Schaub, J. de Oliveira-Neto, S. Jeganathan, Chimia 1986, 40, 244.
[17] F. Hintze, D. Hoppe, Synthesis 1992, 1216.
[18] D. Hoppe, M. Paetow, F. Hintze, Angew. Chem. 1993, 105, 430, ibid. Int. Ed. 1993, 32, 394; M. Paetow, M. Kotthaus, M. Grehl, R. Fröhlich, D. Hoppe, Synlett 1994, 1034.
[19] R. Seemayer, M. P. Scheider, Recl. Trav. Chim. Pays-Bas 1991, 110, 171.
[20] L. Goodman, A. Benitez, B. R. Baker, J. Am. Chem. Soc. 1958, 80, 1680.
[21] J. E. Baldwin, J. Chem. Soc., Chem. Commun. 1976, 734.
[22] R. W. Hoffmann, J. Lanz, R. Metternich, G. Tarara, D. Hoppe, Angew. Chem. 1987, 99, 1196, ibid. Int. Ed. 1987, 26, 1145.
[23] K. Tamao, N. Ishida, T. Tanaka, M. Kumada, Organometallics 1983, 2, 1694; Y. Matsumoto, T. Hayashi, Y. Ito, Tetrahedron 1994, 50, 335; I. Fleming, R. Henning, D. C. Parker, H. E. Plaut, P. E. J. Sanderson, J. Chem. Soc., Perkin Trans. 1 1995, 317; I. Fleming, Chemtracts - Org. Chem. 1996, 9, 1.
[24] D. Hoppe, A. Carstens, T. Krämer, Angew. Chem. 1990, 103, 1455; ibid. Int. Ed. 1990, 29, 1424; A. Carstens, D. Hoppe, Tetrahedron 1994, 50, 6097; C. Derwing, D. Hoppe, Synthesis 1996, 149.
[25] F. Hammerschmidt, A. Hanninger, Chem. Ber. 1995, 128, 1069; M. Schlosser, D. Limat, J. Am. Chem. Soc. 1995, 117, 12342; D. J. Gallagher, H. Du, S. A. Long, P. Beak, J. Am. Chem. Soc. 1996, 118, 11391.
[26] S. H. Kleinfeld, E. Wegelius, D. Hoppe, Helv. Chim. Acta 1999, 82, in press.
[27] S. Caddick, K. Jenkins, Chem. Soc. Rev. 1996, 447.
[28] S. Thayumanavan, A. Basu, P. Beak, J. Am. Chem. Soc. 1997, 119, 8209.
[29] M. Oestreich, R. Fröhlich, D. Hoppe, Tetrahedron Lett. 1998, 39, 1745; M. Oestreich, R. Fröhlich, D. Hoppe, J. Org. Chem., in press.
[30] M. Oestreich, D. Hoppe, Tetrahedron Lett. 1999, 40, 1881.
[31] M. T. Reetz, Chem. Rev. 1999, 99, 1121.
[32] L. Fitjer, U. Quabeck, Synth. Commun. 1985, 15, 855.
[33] M. J. Woltering, R. Fröhlich, B. Wibbeling, D. Hoppe, Synlett 1998, 797.
[34] W. G. Kofron, L. M. Baclawski, J. Org. Chem. 1976, 41, 1871.
[35] H. Ahrens, Ph. D. thesis, WWU Münster, 1994; M. Paetow, H. Ahrens, D. Hoppe, Tetrahedron Lett. 1992, 33, 5323.
[36] W. Steglich, G. Höfle, Angew. Chem. 1969, 81, 1001; ibid. Int. Ed. 1969, 8, 981.

[^0]: $\left.{ }^{1}\right)$ Taken in part from the Ph.D. theses of M.J.W. and M.O.
 ${ }^{2}$) Crystal-structure analysis.
 ${ }^{3}$) Enantiospecific intramolecular carbolithiations starting from enantiomerically enriched α-amino- [9] or α oxystannanes [10] have also been reported.
 ${ }^{4}$) Recently, Nakai and co-workers have published similar studies on a slightly modified system [12].

[^1]: ${ }^{5}$) This observation is often termed as the Thorpe-Ingold effect or gem-dialkyl effect [13].
 ${ }^{6}$) The synthesis of $\mathbf{3 b}$ was conducted in an autoclave at 200 bar, since high pressures favor the formation of phosphonium salts [15]; the moderate yield of 41% is due to steric interactions of the geminal Me groups and the bulky phosphine.

[^2]: ${ }^{\text {a }}$) Ligands (e.g., $\mathbf{1}$ and TMEDA, respectively) at the Li center are omitted for the sake of clarity.

[^3]: ${ }^{7}$) Such 1,3-cycloeliminations have been observed by us [18], and later by Normant, Marek and co-workers [4], and Nakai and co-workers [12]; for a mechanistic view on this reaction and the assignment of the relative configuration of $\mathbf{9}$, see [12].
 ${ }^{8}$) Compound rac-11a was prepared in three steps starting from cyclopentene by epoxidation [20], addition of $\mathrm{PhCH}_{2} \mathrm{MgBr}$ [19], and subsequent acetylation.

[^4]: ${ }^{9}$) For the deposition of the crystallographic data, see [14] in [11].
 ${ }^{10}$) In an interesting case of a domino cyclocarbolithiation/retro-[1,4]-Brook-rearrangement sequence, the benzylic electrophilic substitution is assumed to proceed under retention of the configuration [26].
 ${ }^{11}$) For recent reviews, see [5][27]; Beak has also successfully applied kinetic dynamic resolutions with some (-)-sparteine (1) benzylic lithium complexes [25][28].

[^5]: ${ }^{12}$) This assumption is strongly supported by the observation that the benzylic lithium-carbanion pair could not be diastereoselectively substituted by electrophiles as demonstrated for the stannylation. Nakai and coworkers also discuss an 'open-chain' transition state for such intermediates [12].
 ${ }^{13}$) For a more detailed discussion of the role of the existing stereogenic center in the cyclization precursor, see [29].

[^6]: ${ }^{14}$) The signals of the minor diastereoisomer are given in square brackets.

